1) Measurements of CO (mg/m³) concentrations were recorded at 30 sites:

6,7	8,5	8,7	8,8	9,1	9,1	9,3	10,2	10,2	10,3
10,5	10,5	10,9	11,2	11,4	11,5	11,7	11,7	11,7	12,8
13,2	13,3	13,5	14,0	14,1	14,2	20,0	20,5	21,5	22,0

- a) Make a complete frecuency table. Find an appropriate class subdivision (at least 5 intervals). Find Quartiles and P20, P40, P90.
- b) Find the central parameters
- c) Find the spread parameters
- d) Make all the charts you know.
- 2) You have the following different kinds of fruit in your refrigerator:

bananas, pears, cherries, grapes, and peaches

You want to make a fruit salad using 3 of these fruits. How many different fruit salads are possible?

3) Assuming that any arrangement of letters forms a 'word', how many 'words' of any length can be formed from the letters of the word SQUARE?

(No repeating of letters)

- 4) Bag A contains 10 marbles of which 2 are red and 8 are black. Bag B contains 12 marbles of which 4 are red and 8 are black. A ball is drawn at random from each bag.
 - a) Draw a probability tree diagram to show all the outcomes the experiment.
 - b) Find the probability that:
 - (i) both are red.
 - (ii) both are black.
 - (iii) one black and one red.
 - (iv) at least one red.
- 5) A jar consists of 21 sweets. 12 are green and 9 are blue. William picked two sweets at random.
 - a) Draw a tree diagram to represent the experiment.
 - b) Find the probability that
 - i) both sweets are blue.
 - ii) one sweet is blue and one sweet is green.
 - c) William randomly took a third sweet. Find the probability that:
 - i) all three sweets are green?
 - ii) at least one of the sweet is blue?
- 6º) Un estuche contiene 15 lápices de color rojo y 10 de color azul.
 - a) Si elegimos uno al azar, ¿cuál es la probabilidad de que sea rojo?.
 - b) Si extraemos dos, ¿Cuál es la probabilidad de que ambos sean azules?.
 - c) Si elegimos dos, calcula la probabilidad de que el primero sea azul y el segundo rojo.

(PAU Oviedo, 96. Mat. Apl. CCSS).

1	2	3	4	5	6
4	0,5	1	1,5	1,5	1,5