February

Name:......No:.....course:.....

1)

a)	$\frac{x^2 + x}{3} - 1 > -\frac{1 - 2x^2}{6}$
b)	$\frac{(2x-1)(2x+1)}{x^2-4} \le 0$

2) Solve the simultaneous inequalities:

$$\begin{cases} 2x - y > 6 \\ 3x + 5y - 10 < 0 \end{cases}$$

- 3) Convert the following:
 - a) 120° to radians (use fractions to express it)
 - b) 2.6 radians to degrees
 - c) $3\pi/5$ radians to degrees
 - d) 57.87° to radians

4) Given that $\pi \le \alpha \le 3 \, \pi/2$ and $\tan \alpha = \frac{1}{\sqrt{3}}$, find $\sin \alpha$ and $\cos \alpha$ (Don't find α using your calculator)

5) Calculate all the possible angles in each of the following:

a)
$$\cos x = -\frac{\sqrt{3}}{2}$$
 b) $\tan x = \sqrt{3}$

6)

The most powerful lighthouse on Lake Michigan is 50 m tall. Suppose you are in a boat just off the coast. Determine your distance from the base of the lighthouse if the angle from the boat to the top of the lighthouse is 14º

February

7) If $\cos \alpha = 0.6$ and $0 \le \alpha \le \frac{\pi}{2}$, find the trigonometric ratios of $(\pi - \alpha)$ and $(\frac{3\pi}{2} + \alpha)$. Do not find α using your calculator. Make a unit circle drawing if you need it.

8) From a certain spot, the top of a flagpole has an angle of elevation of 30°. Move 10m in a straight line towards the flagpole. Now the top has an angle of elevation of 50°. Find the height of the flagpole and its distance from the second point.

9) You are stationed at a radar base and you observe an unidentified plane at an altitude h = 1000 m flying towards your radar base at an angle of elevation = 30° . After exactly one minute, your radar sweep reveals that the plane is now at an angle of elevation = 60° maintaining the same altitude. What is the speed (in m/s) of the plane?

1	2	3	4	5	6	7	8	9
1,5	1	1	1	1	1	1	1	1,5