MATHS TEST	. Trigonometry
N.4 I	

4° ESO _ 2013.

March

Name:......No:.....course:......

- 1ª) Convert the following:
 - a) 20° to radians (use fractions to express it)
 - b) 3.1 radians to degrees
 - c) $\pi/6$ radians to degrees
 - d) 156.34° to radians
- 2) Given that $\frac{\pi}{2} \le \alpha \le \pi$ and $\cos \alpha = -\frac{\sqrt{3}}{2}$, find $\sin \alpha$ and $\tan \alpha$ (Don't find α using your calculator)

- 3) Calculate all the possible angles in each of the following:

a)
$$\cos x = \frac{1}{2}$$

b)
$$\tan x = -0.4$$

- 4ª) From a window in building A, I observe the top of building B across the 50 foot wide street at an angle of elevation of 74°25'. I observe the base of building B at an angle of depression of 52°18'. Find the height of building B.
- 5) Prove the identities:

a)
$$\frac{sen^2x - \cos^2x}{4} = 1$$

b)
$$tg^2x - tg^2x \cdot sen^2x = sen^2x$$

6) If $\sin\alpha=\approx0.8$ and $0\leq\alpha\leq\frac{\pi}{2}$, find the trigonometric ratios of $\pi+\alpha$ and $2\pi-\alpha$. Do not find α using your calculator. Make a unit circle drawing if you need it.

7) How would you calculate the length of AB using the information provided? Show all your steps.

8) . A person observes that from point A, the angle of elevation to the top of a cliff at D is 30°. Another person at point B, notes that the angle of elevation to the top of the cliff is 45°. If the height of the cliff is 80.0 m, find the distance between A and B. Show the steps of your solution.

9) Solve these trigonometric equations:

a)
$$\sin^2 x - \cos^2 x = \frac{1}{2}$$

b)
$$sin^2x - sinx = 0$$

1	2	3	4	5	6	7	8	9
0.8	0,75	0,75	1	1,5	1,2	1	2	1