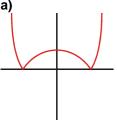
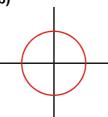
TEMA 10 - FUNCIONES ELEMENTALES

FUNCIÓN

EJERCICIO 1: Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función. Razona tu respuesta:

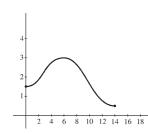


b)



Solución: En una función, a cada valor de x le corresponde, a lo sumo, un valor de y. Por tanto, a) es función, pero b) no lo es.

EJERCICIO 2 : La siguiente gráfica corresponde a la función y = f(x):



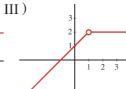
- a) ¿Cuál es su dominio de definición?
- b) Indica los tramos en los que la función es creciente y en los que es decreciente.
- En qué punto tiene la función su máximo?

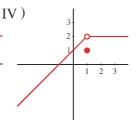
Solución:

- a) [0, 14]
- b) Es creciente en [0, 6] y decreciente en [6, 14].
- c) El máximo está en el punto (6, 3).

EJERCICIO 3: Dadas las funciones:

1)



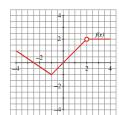


- a) Di si son continuas o no.
- b) Halla la imagen de x=1 para cada una de las cuatro funciones.

Solución:

- a) Solo es continua la II).
- b) I) $x = 1 \rightarrow y = 2$
- II) $x = 1 \rightarrow y = 2$ III) $x = 1 \rightarrow y$ no está definida.
- IV) $x = 1 \rightarrow y = 1$

EJERCICIO 4 : Dada la gráfica:



- a) Di si f(x) es continua o no. Razona tu respuesta.
- b) Halla f(-1), f(0), f(2) y f(3).

Solución:

- a) No es continua, puesto que en x = 2 no está definida.
- b) f(-1) = -1; f(0) = 0; f(2) no existe; f(3) = 2

EJERCICIO 5: Halla
$$f(-1)$$
, $f(0)$ y $f(2)$, siendo: $f(x) = \begin{cases} 3x^2 - 1 & \text{si } x \le -1 \\ x + 1 & \text{si } -1 < x \le 2 \\ x^2 & \text{si } x > 2 \end{cases}$

Solución:

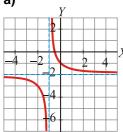
$$f(-1) = 3 \cdot (-1)^2 - 1 = 3 \cdot 1 - 1 = 3 - 1 = 2$$

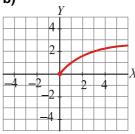
$$f(0) = 0 + 1 = 1$$

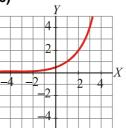
$$f(2) = 2 + 1 = 3$$

DOMINIO

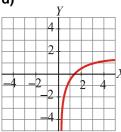
EJERCICIO 6: A partir de la gráfica de estas funciones, indica cuál es su dominio y su recorrido:

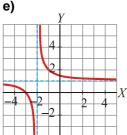


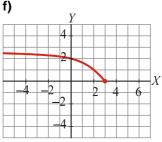




d)







Solución:

- a) Dominio = $\mathbf{R} \{-1\}$
- b) Dominio = $[0, +\infty)$
- c) Dominio = $\mathbf{R} \{0\}$

- Recorrido = $R \{-2\}$
- Recorrido = $[0,\infty)$
- Recorrido = $(0, \infty)$

- d) Dominio = $(0, \infty)$ Recorrido = R
- e) Dominio = $R \{-2\}$ Recorrido = $R - \{1\}$
- f) Dominio = $(-\infty,3]$ Recorrido = $[0,\infty)$

EJERCICIO 7 : Halla el dominio de definición de las siguientes funciones:

a)
$$y = \frac{1}{x^2 - 16}$$

b)
$$y = \sqrt{1 + 2x}$$

c)
$$y = \frac{x}{x^2 - 4}$$

$$d) y = \sqrt{2x}$$

e)
$$y = \frac{1}{x^2 + 4}$$

$$f) y = \frac{1}{\sqrt{x-2}}$$

g)
$$y = \frac{1}{x^2 - 2x}$$

h)
$$y = \sqrt{6 + 3x}$$

a)
$$y = \frac{1}{x^2 - 16}$$
 b) $y = \sqrt{1 + 2x}$ c) $y = \frac{x}{x^2 - 4}$ d) $y = \sqrt{2x}$ e) $y = \frac{1}{x^2 + 4}$ f) $y = \frac{1}{\sqrt{x - 2}}$ g) $y = \frac{1}{x^2 - 2x}$ h) $y = \sqrt{6 + 3x}$ i) $y = \frac{3}{(x - 5)^2}$ j) $y = \sqrt{2x - 4}$ k) $y = \frac{1}{x^2 - 9}$ l) $y = \sqrt{x - 2}$ m) $y = \frac{2 + x}{x^2}$ n) $y = \sqrt{3x - 1}$ ñ) $y = \frac{x + 1}{\sqrt{x}}$ o) $y = \frac{1}{3x - x^2}$ p) $y = \sqrt{x^2 - 1}$ q) $y = \frac{2x}{(x - 3)^2}$

k)
$$y = \frac{1}{x^2 - 9}$$

$$I) y = \sqrt{x-2}$$

m)
$$y = \frac{2+x}{x^2}$$

o)
$$y = \frac{1}{3x - x^2}$$

p)
$$y = \sqrt{x^2 - 1}$$

q)
$$y = \frac{2x}{(x-3)^2}$$

a)
$$x^2 - 16 = 0 \implies x^2 = 16 \implies x = \pm \sqrt{16} = \pm 4 \implies \text{Dominio} = \mathbf{R} - \{-4, 4\}$$

b)
$$1 + 2x \ge 0 \implies 2x \ge -1 \implies x \ge \frac{-1}{2} \rightarrow \text{Dominio} = \left[\frac{-1}{2}, +\infty\right]$$

c)
$$x^2 - 4 = 0 \implies x^2 = 4 \implies x = \pm \sqrt{4} \implies x = \pm 2 \implies \text{Dominio} = \mathbf{R} - \{-2, 2\}$$

d)
$$2x \ge 0 \implies x \ge 0 \rightarrow \text{Dominio} = [0, +\infty)$$

e)
$$x^2 + 4 \neq 0$$
 para todo $x \in \mathbb{R} \rightarrow \mathsf{Dominio} = \mathbb{R}$

f)
$$x-2>0 \implies x>2 \rightarrow Dominio = (2, +\infty)$$

g)
$$x^2 - 2x = 0$$
 \Rightarrow $x(x-2) = 0$ \Rightarrow
$$\begin{cases} x = 0 \\ x = 2 \end{cases}$$
 Dominio = $\mathbf{R} - \{0, 2\}$

h)
$$6+3x \ge 0 \implies 3x \ge -6 \implies x \ge -2 \implies \text{Dominio} = [-2, +\infty)$$

i)
$$(x-5)^2 = 0 \implies x = 5 \rightarrow Dominio = \mathbf{R} - \{5\}$$

j)
$$2x-4 \ge 0 \implies 2x \ge 4 \implies x \ge 2 \implies Dominio [2, +\infty)$$

k)
$$x^2 - 9 = 0 \implies x^2 = 9 \implies x = \pm \sqrt{9} = \pm 3 \implies \text{Dominio} = R - \{-3, 3\}$$

I)
$$x-2 \ge 0 \implies x \ge 2 \implies \text{Dominio} = [2, +\infty)$$

m)
$$x^2 = 0 \implies x = 0 \rightarrow Dominio = R - \{0\}$$

n)
$$3x-1 \ge 0 \implies 3x \ge 1 \implies x \ge \frac{1}{3} \rightarrow \mathsf{Dominio} = \left[\frac{1}{3}, +\infty\right]$$

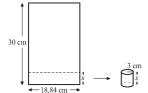
$$\tilde{\mathsf{n}}$$
) $x > 0 \rightarrow \mathsf{Dominio} = (0, +\infty)$

o)
$$3x - x^2 = 0 \implies x(3-x) = 0 \begin{bmatrix} x = 0 \\ x = 3 \end{bmatrix} \rightarrow Dominio = R - \{0, 3\}$$

p)
$$x^2 - 1 \ge 0 \rightarrow \text{Dominio} = (-\infty, -1] \cup [1, +\infty)$$

q)
$$(x-3)^2 = 0 \implies x = 3 \rightarrow Dominio = \mathbf{R} - \{3\}$$

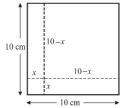
EJERCICIO 8: Tenemos una hoja de papel de base 18,84 cm y altura 30 cm. Si recortamos por una línea paralela a la base, a diferentes alturas, y enrollamos el papel, podemos formar cilindros de radio 3 cm y altura x:



El volumen del cilindro será: $V = \pi \cdot 3^2 \cdot x = 28,26 \ x$ ¿Cuál es el dominio de definición de esta función?

Solución: x puede tomar valores entre 0 y 30 cm. Por tanto, Dominio = (0, 30).

EJERCICIO 9: De un cuadrado de lado 10 cm se recorta una tira de x cm en la base y otra de la misma longitud en la altura, obteniéndose un nuevo cuadrado de lado (10 - x):



El área de este nuevo cuadrado será: $A = (10 - x)^2$ ¿Cuál es el dominio de definición de esta función?

Solución: x puede tener valores entre 0 y 10 cm. Por tanto, Dominio = (0, 10).

EJERCICIO 10 : Vamos a considerar todos los rectángulos de 30 cm de perímetro. Si llamamos x a la longitud de la base, el área será:

A = x(15 - x) ¿Cuál es el dominio de definición de esta función?

Solución: x puede tomar valores entre 0 y 15 cm. Por tanto, Dominio = (0, 15).

FUNCIONES LINEALES

EJERCICIO 11: Representa gráficamente:

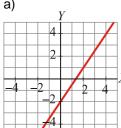
a)
$$y = \frac{3}{2}x - 2$$

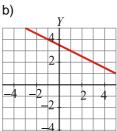
b)
$$y = -0.5x + 3.5$$

c)
$$y = \frac{-3}{5}x + 1$$

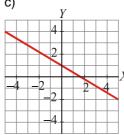
b)
$$y = -0.5x + 3.5$$
 c) $y = \frac{-3}{5}x + 1$ d) $f(x) = \frac{4-2x}{5}$

Solución:

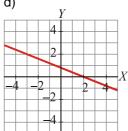




c)



d)



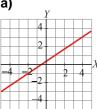
EJERCICIO 12: Escribe la ecuación de la recta que pasa por los puntos (3, -4) y (-2, 3).

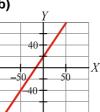
Solución: La pendiente de la recta es: $m = \frac{3 - (-4)}{2} = \frac{7}{5} = -\frac{7}{5}$

$$m = \frac{3 - (-4)}{-2 - 3} = \frac{7}{-5} = -\frac{7}{5}$$

La ecuación será:
$$y+4=\frac{-7}{5}(x-3) \Rightarrow y=\frac{-7}{5}x+\frac{1}{5}$$

EJERCICIO 13: Escribe la ecuación de las rectas cuyas gráficas son las siguientes:





Solución:

a) Vemos que la recta pasa por los puntos (1, 1) y (4, 3). Su pendiente será: $m = \frac{3-1}{4} = \frac{2}{3}$

 $y-1 = \frac{2}{3}(x-1) \Rightarrow y = \frac{2}{3}x + \frac{1}{3}$ La ecuación será:

b) Observamos que la recta pasa por los puntos (0, 20) y (50, 80). Su pendiente será : $m = \frac{80 - 20}{50 - 0} = \frac{60}{50} = \frac{6}{5}$

Por tanto, su ecuación es: $y = \frac{6}{5}x + 20$

EJERCICIO 14: Halla la ecuación de la recta que pasa por (-1, 2) y cuya pendiente es $-\frac{1}{3}$.

Solución:

Escribimos la ecuación punto-pendiente: $y-2=-\frac{1}{3}(x+1) \Rightarrow y=\frac{-1}{3}x+\frac{5}{3}$

FUNCIONES CUADRÁTICAS

EJERCICIO 15: Representa gráficamente las funciones:

a)
$$v = -x^2 + 4x - 1$$

b)
$$y = (x+1)^2 - 3$$

c)
$$y = -x^2 + 4$$

a)
$$y = -x^2 + 4x - 1$$
 b) $y = (x + 1)^2 - 3$ c) $y = -x^2 + 4$ d) $f(x) = -2x^2 + 4x$

Solución:

a) • Hallamos el vértice:
$$x = \frac{-b}{2a} = \frac{-4}{-2} = 2 \rightarrow y = 3 \rightarrow \text{Punto } (2, 3).$$

• Puntos de corte con los ejes:

Con el eje
$$X \rightarrow y = 0 \rightarrow -x^2 + 4x - 1 = 0 \rightarrow x = \frac{-4 \pm \sqrt{16 - 4}}{-2} = \frac{-4 \pm \sqrt{12}}{-2} \begin{bmatrix} x = 0.27 \rightarrow \text{Punto}(0.27; 0) \\ x = 3.73 \rightarrow \text{Punto}(3.73; 0) \end{bmatrix}$$

Con el eje Y \rightarrow x = 0 \rightarrow y = -1 \rightarrow Punto (0,-1)

• Tabla de valores alrededor del vértice:

Χ	0	1	2	3	4
Υ	-1	2	3	2	-1

· La gráfica es:



- b) Hallamos el vértice: $x = \frac{-b}{2a} = \frac{-2}{2} = -1 \rightarrow y = -3 \rightarrow \text{Punto } (-1, -3).$
- Puntos de corte con los ejes:

Con el eje X
$$\rightarrow$$
 y=0 \rightarrow x²+2x+1-3=0 \Rightarrow x²+2x-2=0

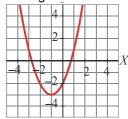
$$x = \frac{-2 \pm \sqrt{4+8}}{2} \begin{bmatrix} x = 0.73 & \rightarrow & \text{Punto}(0.73; 0) \\ x = -2.73 & \rightarrow & \text{Punto}(-2.73; 0) \end{bmatrix}$$

Con el eje Y \rightarrow x = 0 \rightarrow y = -2 \rightarrow Punto (0, -2)

• Hallamos algún otro punto:

Χ	-3	-2	-1	0	1
Υ	1	-2	-3	-2	1

· La gráfica es:



- c) Hallamos el vértice: $V x = \frac{-b}{2a} = \frac{0}{2} = -0 \rightarrow y = 4 \rightarrow Punto (0,4).$
- Puntos de corte con los ejes:

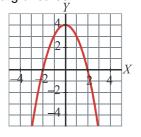
Con el eje
$$X \rightarrow y = 0 \rightarrow -x^2 + 4 = 0 \Rightarrow x^2 = 4 \rightarrow x = \pm \sqrt{4} = \pm 2 \rightarrow Puntos(-2, 0)y(2, 0)$$

Con el eje Y \rightarrow x = 0 \rightarrow y = 4 \rightarrow Punto (0,4)

• Hallamos algún otro punto:

Χ	-2	-1	0	1	2
Υ	0	3	4	3	0

· La gráfica es:



d) • El vértice de la parábola es:
$$x = \frac{-b}{2a} = \frac{-4}{-4} = 1 \rightarrow y = 2 \rightarrow Punto (1, 2)$$

• Puntos de corte con los ejes:
Con el eje
$$X \rightarrow y = 0 \rightarrow -2x^2 + 4x = 0 \rightarrow x(-2x + 4) = 0$$

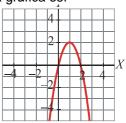
$$\begin{cases} x = 0 & \rightarrow \text{ Punto } (0, 0) \\ -2x + 4 = 0 & \rightarrow x = 2 & \rightarrow \text{ Punto } (2, 0) \end{cases}$$

Con el eje Y \rightarrow x = 0 \rightarrow y = 0 \rightarrow Punto (0,0)

· Hallamos algún otro punto:

X 1 0 1 2 0	X	-1	0	1	2	3
Y -b () / () -b	Y	-6	0	2	0	-6

· La gráfica es:



RECOPILACIÓN RECTAS Y PARÁBOLAS

EJERCICIO 16:

- a) Representa gráficamente: $y = -\frac{1}{2}x + 3$
- b) Halla el vértice de la parábola: $y = 2x^2 10x + 8$

Solución:

Hallamos dos puntos de la recta:

х	у
0	3
2	2

b) La abscisa del vértice es: $x = \frac{-b}{2a} = \frac{10}{4} = \frac{5}{2}$

La ordenada es:
$$y = 2\left(\frac{5}{2}\right)^2 - 10\left(\frac{5}{2}\right) + 8 = \frac{-9}{2}$$

El vértice es el punto $\left(\frac{5}{2}, \frac{-9}{2}\right)$.

EJERCICIO 17:

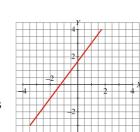
- a) Obtén la ecuación de la recta que pasa por los puntos (-2, -1) y (1, 3), y represéntala.
- b) Halla los puntos de corte con los ejes de la parábola $y = -x^2 + 4x$.

Solución:

La pendiente de la recta es:
$$m = \frac{3 - (-1)}{1 - (-2)} = \frac{3 + 1}{1 + 2} = \frac{4}{3}$$

La ecuación será:
$$y-3=\frac{4}{3}(x-1) \Rightarrow y=\frac{4}{3}x+\frac{5}{3}$$

Con los dos puntos que tenemos la podemos representar:



b) Puntos de corte con los ejes:

• Con el eje X:
$$y = 0 \rightarrow 0 = -x^2 + 4x \rightarrow x (-x + 4) = 0 \rightarrow \begin{cases} x = 0 \\ x = 4 \end{cases}$$
 Punto $(0, 0)$

• Con el eje Y: $x = 0 \rightarrow y = 0 \rightarrow Punto (0, 0)$ Los puntos de corte con los ejes son el (0, 0) y el (4, 0)

EJERCICIO 18:

II)
$$x - 2y + 1 = 0$$

III) y = 2

b) Representa gráficamente:
$$y = x^2 - 3x$$

Solución:

a) I)
$$y = -2x \rightarrow \text{pendiente} = -2$$

II)
$$y = \frac{x+1}{2} = \frac{1}{2}x + \frac{1}{2} \rightarrow \text{pendiente} = \frac{1}{2}$$

III) pendiente = 0

b)

Hallamos el vértice:
$$x = \frac{3}{2} \rightarrow y = \frac{9}{4} - \frac{9}{2} = \frac{-9}{4} \rightarrow \left(\frac{3}{2}, -\frac{9}{4}\right)$$

Puntos de corte con los ejes:

• Con el eje $Y \rightarrow x = 0 \rightarrow y = 0 \rightarrow Punto (0.0)$

• Con el eje
$$X \rightarrow y=0 \rightarrow x^2-3x=0 \rightarrow x(x-3)=0$$

$$\begin{cases} x=0 \rightarrow \text{Punto } (0,0) \\ x=3 \rightarrow \text{Punto } (3,0) \end{cases}$$

Tabla de valores alrededor del vértice:

Χ	0	1	3/2	2	3
Υ	0	-2	-9/4	-2	0

EJERCICIO 19:

a) Halla la ecuación de la recta que pasa por el punto (-1, 3) y tiene pendiente -1.

b) Representa gráficamente: $y = -x^2 + 4$

Solución:

a) La ecuación será:
$$y - 3 = -1 (x + 1) \Rightarrow y = -x + 2$$

b)

El vértice es el punto (0, 4).

Los puntos de corte con los ejes son:

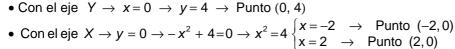
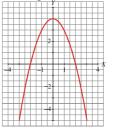


Tabla de valores alrededor del vértice:

Х	-2	-1	0	0	1
Υ	0	3	4	3	0



EJERCICIO 20;

a) Representa gráficamente: 2x + y - 1 = 0

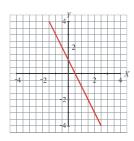
b) Halla el vértice de la parábola: $y = 2x^2 - 8x + 2$

Solución:

a) Despeiamos v: v = -2x + 1

Hallamos dos puntos de la recta y la representamos.

Х	у
0	1
1	-1



b) La abscisa del vértice es: $x = \frac{-b}{2a} = \frac{8}{4} = 2$

La ordenada es: $y = 2 \cdot 4 - 8 \cdot 2 + 2 = 8 - 16 + 2 = -6$

El vértice es el punto (2, -6).

FUNCIÓN DE PROPORCIONALIDAD INVERSA

EJERCICIO 21: Representa gráficamente las siguientes funciones:

a)
$$y = \frac{-3}{x+4}$$

b)
$$y = \frac{-1}{x-3} - 2$$

c)
$$y = -1 + \frac{2}{x-5}$$

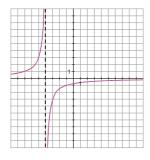
Solución:

a) Dominio de definición: R - {-4}

Tabla de valores

X	-∞	-7	-5	-4	-4 ⁺	-3	-1	+∞
Υ	0	1	3	+∞	-∞	-3	-1	0

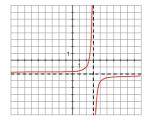
Las asíntotas son la recta y = 0 y la recta x = -4.



b) Dominio de definición: R - {3}

Χ	-∞	1	2	3	3 ⁺	4	5	+∞
Υ	-2	-1,5	-1	+∞	-∞	-3	-2,5	-2

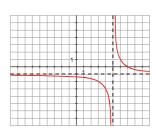
Las asíntotas son las rectas x = 3 e y = -2.



c) Dominio de definición: R - {5}

Χ	-8	3	4	5	5 ⁺	6	7	+∞
Υ	-1	-2	-3	-∞	+∞	1	0	-1

. Las asíntotas son las rectas x = 5, y = -1.



FUNCIÓN RADICAL

EJERCICIO 22: Representa gráficamente las siguientes funciones:

a) y =
$$1 - \sqrt{-3x}$$

b) y =
$$\sqrt{3x-1}$$

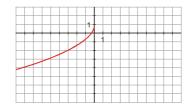
c)
$$y = \sqrt{2x+3} - 1$$

Solución:

a) Dominio de definición: (-∞,0]

Hacemos una tabla de valores:

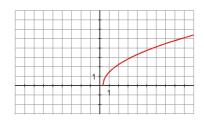
Χ	-∞	-3	-2	-1	0
Y	-∞	-2	-1,45	-0,73	-11



b) Dominio de definición: $\left| \frac{1}{3}, +\infty \right|$

Hacemos una tabla de valores:

X	1/3	1	2	3	+∞
Y	0	1,41	2,24	2,83	+∞



c) Dominio de definición: $\left[-\frac{3}{2},+\infty\right]$

Tabla de valores:

Χ	-3/2	-1	1/2	3	+∞
Υ	-1	0	1	2	+8

FUNCIÓN EXPONENCIAL Y LOGARÍTMICAS

EJERCICIO 23: Dibuja la gráfica de las siguientes funciones:

a)
$$y = 2^{1-x}$$

b)
$$y = log_{1/2} x$$
 c) y

c)
$$y = 1 - log_2 x$$

b)
$$y = log_{\frac{1}{4}} x$$
 c) $y = 1 - log_2 x$ d) $y = \left(\frac{1}{4}\right)^{x+2}$

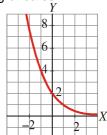
e)
$$y = 3^{x+1}$$

Solución:

a)

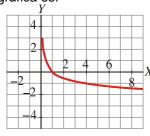
- La función está definida y es continua en R.
- Hacemos una tabla de valores:

Χ	-∞	-2	-1	0	1	2	+∞
Y	+∞	8	4	2	1	1/2	0



- b)
- Dominio = $(0, +\infty)$
- Hacemos una tabla de valores:

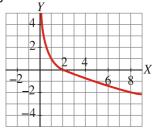
Х	$\left(\frac{1}{4}\right)^{-\infty}$	$\left(\frac{1}{4}\right)^{-2}$	$\left(\frac{1}{4}\right)^{-1}$	$\left(\frac{1}{4}\right)^0$	$\left(\frac{1}{4}\right)^1$	$\left(\frac{1}{4}\right)^2$	$\left(\frac{1}{4}\right)^{+\infty}$
Х	0	16	4	1	1/4	1/16	+∞
Υ	-∞	-2	-1	0	1	2	+∞



- c)
- Dominio = $(0, +\infty)$
- Hacemos una tabla de valores.

Χ	2-∞	2^{-2}	2^{-1}	2^0	2^{1}	2^2	2 ^{+∞}
Χ	0	1/4	1/2	1	2	4	+∞
Υ	+∞	3	2	1	0	-1	-∞

• La gráfica será:

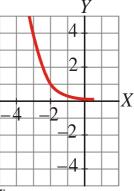


d)

- La función está definida y es continua en R.
- Hacemos una tabla de valores:

Χ	-∞	-2	-1	0	1	2	+∞
Υ	+∞	1	1/4	1/64	1/256	1/1024	0

La gráfica será:

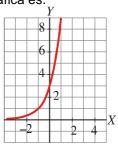


e)

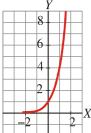
- La función está definida y es continua en R.
- Hacemos una tabla de valores:

Χ	-∞	-2	-1	0	1	2	+∞
Υ	0	1/3	1	3	9	27	+∞

La gráfica es:



EJERCICIO 24: Consideramos la gráfica:

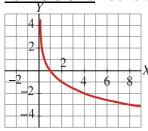


- a) Halla la expresión analítica de la función correspondiente.
- b) ¿Cuál es el dominio de dicha función?
- c) Estudia la continuidad y el crecimiento.

Solución:

- a) Es una función exponencial de base mayor que 1, que pasa por los puntos (0, 1), (1, 4)... Su expresión analítica es $y = 4^x$.
- b) Dominio = \mathbf{R}
- c) Es una función continua y creciente.

EJERCICIO 25: Considera la siguiente gráfica:



- a) Escribe la expresión analítica de la función correspondiente.
- b) Estudia la continuidad y el crecimiento de la función e indica cuál es su dominio de definición.

Solución:

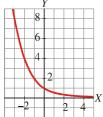
a) Es una función logarítmica con base menor que 1, que pasa por los puntos (1, 0), (2, -1),

$$(4, -2), (\frac{1}{2}, 1)...$$
 Su expresión analítica es: $y = log_{\frac{1}{2}}x$

- b) Es una función continua.
 - Es decreciente.
 - Dominio = $(0, +\infty)$

EJERCICIO 26:

a) ¿Cuál es la expresión analítica de la función correspondiente a esta gráfica?



b) Indica cuál es el dominio de definición y estudia la continuidad y el crecimiento de la función.

Solución:

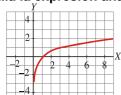
a) Es una función exponencial con base menor que 1, que pasa por los puntos (-2, 4), (-1, 2), $\left(1, \frac{1}{2}\right)$...

Su expresión analítica será: $y = \left(\frac{1}{2}\right)^x$

- b) Dominio = R
 - Es continua.
 - Es decreciente.

EJERCICIO 27:

a) Halla la expresión analítica de la función cuya gráfica es:



b) Estudia los siguientes aspectos de la función: dominio, continuidad y crecimiento.

Solución:

a) Es una función logarítmica que pasa por los puntos (1,0), (3,1), (9,2)... Su expresión analítica será: $y = log_3 x$

- b) Dominio = $(0, +\infty)$
 - Es continua.
 - Es creciente.

FUNCIONES A TROZOS

EJERCICIO 28 : Representa gráficamente:

a)
$$y = \begin{cases} 2x^2 & \text{si } x < -1 \\ 2x + 4 & \text{si } x \ge -1 \end{cases}$$

b)
$$y = \begin{cases} x^2 - 1 & \text{si} & x \le 2 \\ 2 & \text{si} & x > 2 \end{cases}$$

b)
$$y = \begin{cases} x^2 - 1 & \text{si} \quad x \le 2 \\ 3 & \text{si} \quad x > 2 \end{cases}$$
 c) $y = \begin{cases} (-x + 1)/2 & \text{si} \quad x \le -1 \\ -x^2 & \text{si} \quad x > -1 \end{cases}$

Solución:

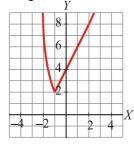
Si x < -1, tenemos un trozo de parábola. ($V_x = 0$)

Si $x \ge -1$, tenemos un trozo de recta.

Tabla de valores:

X	-∞	-3	-2	-1	-1	0	+∞
Υ	+∞	18	8	2	2	4	+∞

La gráfica es:



La gráfica es:

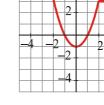
b)

Si $x \le 2$, es un trozo de parábola. ($V_x = 0$)

Si x > 2, es un trozo de recta horizontal.

Tabla de valores:

		_				_			1
Х	-∞	-2	-1	0	1	2	2	3	+∞
Υ	0	3	0	-1	0	3	3	3	+∞



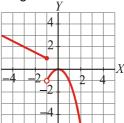
c)

Si $x \le -1$, es un trozo de recta.

Si x > -1, es un trozo de parábola. ($V_x = 0$)

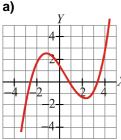
Tabla de valores:

Χ	-∞	-2	-1	-1	0	1	2	+∞
Υ	+∞	1,5	1	-1	0	-1	-4	-∞

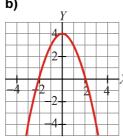


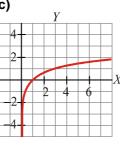
FUNCIONES CON VALOR ABSOLUTO

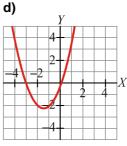
EJERCICIO 29: Representa gráficamente la función y = |f(x)|, sabiendo que la gráfica de y = f(x) es la siguiente:

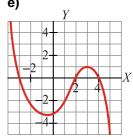


b)

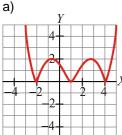




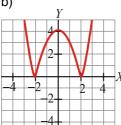




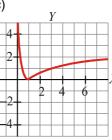
Solución:

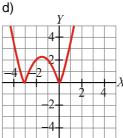


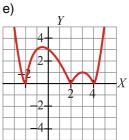
b)



c)







EJERCICIO 30: Define como funciones "a trozos":

a)
$$y = |2x + 4|$$

b)
$$y = |-x + 3|$$

c)
$$y = \frac{x+1}{2}$$

d)
$$y = |3x - 2|$$

d)
$$y = |3x-2|$$
 e) $y = |\frac{3x+1}{2}|$.

Solución:

a)
$$y = \begin{cases} -2x - 4 & \text{si} \quad x < -2 \\ 2x + 4 & \text{si} \quad x > 2 \end{cases}$$

b)
$$y = \begin{cases} -x+3 & \text{si } x < 3 \\ x-3 & \text{si } x \ge 3 \end{cases}$$

a)
$$y =\begin{cases} -2x - 4 & \text{si } x < -2 \\ 2x + 4 & \text{si } x \ge -2 \end{cases}$$
 b) $y =\begin{cases} -x + 3 & \text{si } x < 3 \\ x - 3 & \text{si } x \ge 3 \end{cases}$ c) $y =\begin{cases} -\frac{x + 1}{2} & \text{si } x < -1 \\ \frac{x + 1}{2} & \text{si } x \ge -1 \end{cases}$

d)
$$y = \begin{cases} -3x + 2 & \text{si} \quad x < \frac{2}{3} \\ 3x - 2 & \text{si} \quad x \ge \frac{2}{3} \end{cases}$$
 e) $y = \begin{cases} -\frac{3x + 1}{2} & \text{si} \quad x < \frac{-1}{3} \\ \frac{3x + 1}{2} & \text{si} \quad x \ge \frac{-1}{3} \end{cases}$

e)
$$y = \begin{cases} -\frac{3x+1}{2} & \text{si } x < \frac{-1}{3} \\ \frac{3x+1}{2} & \text{si } x \ge \frac{-1}{3} \end{cases}$$

FUNCIONES ARCOS

EJERCICIO 31 : Obtén el valor de estas expresiones en grados:

a)
$$y = arcsen \frac{1}{2}$$

b)
$$y = \arccos \frac{\sqrt{2}}{2}$$

b)
$$y = \arccos \frac{\sqrt{2}}{2}$$
 a) $y = \arccos \frac{\sqrt{3}}{2}$ b) $y = \arctan 1$

b)
$$y = arctg1$$

a)
$$y = arcsen\left(-\frac{1}{2}\right)$$
 b) $y = arccos 1$

a)
$$y = arccos(-1)$$

b)
$$y = arctg(\sqrt{3})$$

a)
$$y = arcsen\left(-\frac{\sqrt{3}}{2}\right)$$
 b) $y = arccos\left(-\frac{\sqrt{2}}{2}\right)$

b)
$$y = arccos\left(-\frac{\sqrt{2}}{2}\right)$$

Solución:

a)
$$y = 30^{\circ}$$

b)
$$y = 45^{\circ}$$

a)
$$y = 30^{\circ}$$

b)
$$v = 45^{\circ}$$

a)
$$y = 30^{\circ}$$
 b) $y = 45^{\circ}$ a) $y = 30^{\circ}$ b) $y = 45^{\circ}$ a) $y = -30^{\circ}$

b)
$$v = 0$$

a)
$$v = 180^{\circ}$$

b)
$$y = 60$$

a)
$$v = -60^{\circ}$$

b)
$$y = 0^{\circ}$$
 a) $y = 180^{\circ}$ b) $y = 60^{\circ}$ a) $y = -60^{\circ}$ b) $y = 180^{\circ} - 45^{\circ} = 135^{\circ}$

RECOPILACIÓN DE FUNCIONES

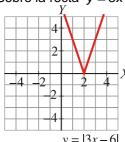
EJERCICIO 32: Representa gráficamente las siguientes funciones:

a)
$$y = |3x - 6|$$

b)
$$y = 2^{x-1}$$

Solución:

a) Sobre la recta y = 3x - 6, hallamos su valor absoluto:



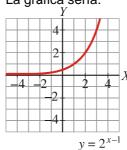
y = |3x - 6|

b) Dominio: D = R

Hacemos una tabla de valores:

Х	-∞	-2	-1	0	1	2	+∞
Υ	0	1/8	1/4	1/2	0	1	+∞

La gráfica sería:



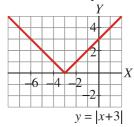
EJERCICIO 33: Obtén la gráfica de las siguientes funciones:

a)
$$y = |x + 3|$$

b)
$$y = -\frac{x^2}{2} + 2x - 2$$

Solución:

a) Sobre la recta y = x + 3, hallamos su valor absoluto :



- b) Hallamos el vértice de la parábola:
- $x = \frac{-b}{2a} = \frac{-2}{-1} = 2 \rightarrow y = 0 \rightarrow \text{Punto } (2, 0)$
- Puntos de corte con los ejes:

Con el eje
$$X \rightarrow y = 0 \rightarrow \frac{-x^2}{2} + 2x - 2 = 0 \Rightarrow x^2 - 4x + 4 = 0$$

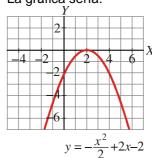
$$x = \frac{4 \pm \sqrt{16 - 16}}{2} = 2 \rightarrow \text{Punto } (2, 0)$$

Con el eje Y \rightarrow x = 0 \rightarrow y = -2 \rightarrow Punto (0, -2)

Tabla de valores alrededor del vértice:

Х	-∞	0	1	2	3	4	+∞
Υ	0	-2	-1/2	0	-1/2	-2	+∞

La gráfica sería:



EJERCICIO 34 : Representa las gráficas de las funciones:

a)
$$y = 1 - \frac{x^2}{4}$$
 b) $y = \left(\frac{1}{3}\right)^{x+1}$

$$\mathbf{b)} \quad \mathbf{y} = \left(\frac{1}{3}\right)^{\mathbf{x}+1}$$

Solución:

- a) El vértice de la parábola está en (0, 1)
 - Puntos de corte con los ejes:

Con el eje
$$X \rightarrow y = 0 \rightarrow 1 - \frac{x^2}{4} = 0 \Rightarrow 4 - x^2 = 0 \Rightarrow x = \pm 2 \rightarrow$$

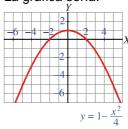
Puntos $(-2, 0)$ y $(2, 0)$

Con el eje $Y \rightarrow x = 0 \rightarrow y = 1 \rightarrow Punto (0, 1)$

Tabla de valores alrededor del vértice:

Χ	-∞	-2	-1	0	1	2	+∞
Υ	-∞	0	3/4	1	3/4	0	-∞

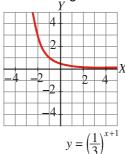
La gráfica sería:



- b) Dominio: D = R
- Hacemos una tabla de valores:

Χ	-∞	-2	-1	0	1	2	+∞
Υ	+⊗	3	1	1/3	1/9	1/27	+∞

La gráfica sería:



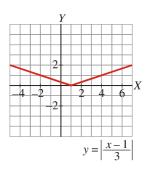
EJERCICIO 35: Representa gráficamente:

a)
$$y = \left| \frac{x-1}{3} \right|$$

b)
$$y = 2^{-x}$$

Solución:

a) Sobre la recta $y = \frac{x-1}{3}$, hallamos su valor absoluto :

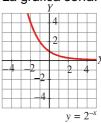


b) Dominio: D = R

Hacemos una tabla de valores:

Χ	-∞	-2	-1	0	1	2	+∞
Υ	+∞	4	2	1	1/2	1/4	0

La gráfica sería:



EJERCICIO 36: Dibuja la gráfica de las siguientes funciones:

a)
$$f(x) = (x-1)^2 + 2$$

b)
$$f(x) = 3^{1-x}$$

Solución:

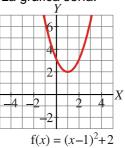
- a) Es una parábola con vértice en (1, 2).
 - Puntos de corte con los ejes:

Con el eje
$$X \rightarrow y = 0$$
 $\rightarrow (x-1)^2 + 2 = 0 \Rightarrow (x-1)^2 = -2 \rightarrow \text{No corta al eje } X.$
Con el eje $Y \rightarrow x = 0 \rightarrow y = 3 \rightarrow \text{Punto } (0,3)$

• Tabla de valores alrededor del vértice:

Χ	-∞	-1	0	1	2	3	+∞
Υ	+∞	6	3	2	3	6	+∞

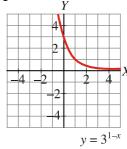
· La gráfica sería:



- b) Dominio: D = R
- Hacemos una tabla de valores:

Χ	-8	-2	-1	0	1	2	+∞
Υ	+∞	27	9	3	1	1/3	0

· La gráfica sería:



EJERCICIO 37: Asocia cada una de estas gráficas con su correspondiente ecuación:

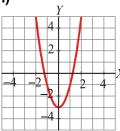
a)
$$y = \frac{2}{3}$$

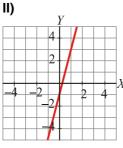
b)
$$y = 2x^2 - 3$$

c)
$$y = 3.5x - 0.75$$

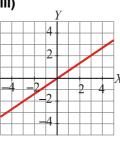
d)
$$y = -x^2 + 4$$

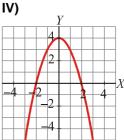
I)





III)





- Solución: a) III
- b) I
- c) II
- d) IV

EJERCICIO 38: Asocia a cada una de estas gráficas una de las siguientes expresiones analíticas:

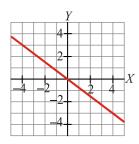
a)
$$y = \frac{-3x^2}{4}$$

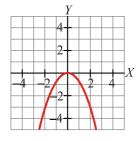
- c) $y = 2x^2 2$
- d) y = 2x 2

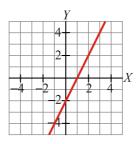
I)

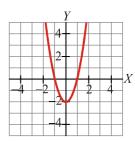
III)

IV)









- Solución: a) II
- b) I
- c) IV
- d) III

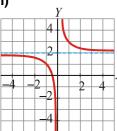
EJERCICIO 39: Asocia a cada una de estas gráficas su ecuación:

a)
$$y = \frac{1}{x-4}$$

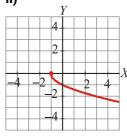
b)
$$y = \sqrt{2x}$$

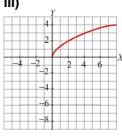
c)
$$y = \frac{1}{x} + 2$$

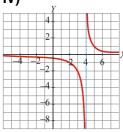
d)
$$y = -\sqrt{x+1}$$



II)







- Solución: a) IV
- b) III
- c) I
- d) II

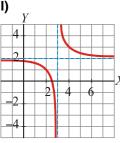
EJERCICIO 40: Asocia cada gráfica con su correspondiente ecuación:

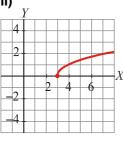
a)
$$y = \frac{1}{x} - 3$$

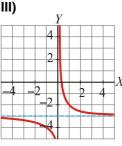
b)
$$y = \sqrt{x-3}$$

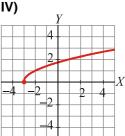
c)
$$y = \frac{1}{x-3} + 2$$

I)









Solución: a) III

EJERCICIO 41: Asocia cada una de las siguientes gráficas con su expresión analítica:

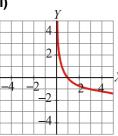
a)
$$y = 3^x$$

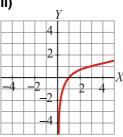
$$b) y = \left(\frac{1}{3}\right)$$

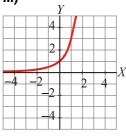
c)
$$y = \log_3 x$$

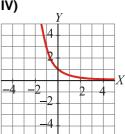
d)
$$y = \log_{1/3} x$$

I)









Solución: a) III

- b) IV
- c) II
- d) I

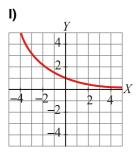
EJERCICIO 42: Asocia a cada gráfica su ecuación:

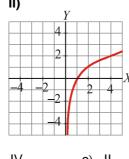
a)
$$y = \left(\frac{2}{3}\right)^x$$

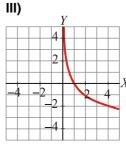
b)
$$y = \left(\frac{3}{2}\right)^x$$
 c) $y = \log_2 x$ d) $y = \log_{1/2} x$

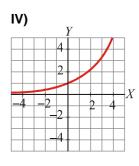
c)
$$y = \log_2 x$$

d)
$$y = log_{1/2} x$$









Solución: a) I

b) IV

c) II

d) III

PROBLEMAS

<u>EJERCICIO 43</u>: En algunos países se utiliza un sistema de medición de la temperatura distinto a los grados centígrados que son los grados Farenheit. Sabiendo que 10 °C = 50 °F y que 60 °C = 140 °F, obtén la ecuación que nos permita traducir temperaturas de °C a °F. Solución:

Llamamos x a la temperatura en grados centígrados e y a la temperatura en grados Farenheit. La función que buscamos pasa por los puntos (10, 50) y (60, 140). Será una recta con pendiente:

$$m = \frac{140 - 50}{60 - 10} = \frac{90}{50} = \frac{9}{5}$$

La ecuación es:
$$y - 50 = \frac{9}{5}(x - 10) \Rightarrow y = \frac{9}{5}x + 32$$

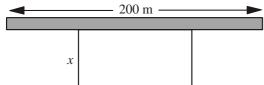
EJERCICIO 44: En un contrato de alquiler de una casa figura que el coste subirá un 2% cada año. Si el primer año se pagan 7200 euros (en 12 recibos mensuales):

- a) ¿Cuánto se pagará dentro de 1 año? ¿Y dentro de 2 años?
- b) Obtén la función que nos dé el coste anual al cabo de x años.

Solución:

- a) Dentro de 1 año se pagarán $7200 \cdot 1,02 = 7344$ euros. Dentro de 2 años se pagarán $7200 \cdot 1,02^2 = 7490,88$ euros.
- b) Dentro de x años se pagarán: $y = 7200 \cdot 1,02^x$ euros.

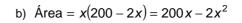
<u>EJERCICIO 45</u>: Con 200 metros de valla queremos acotar un recinto rectangular aprovechando una pared:

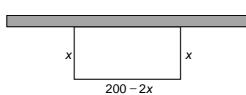


- a) Llama x a uno de los lados de la valla. ¿Cuánto valen los otros dos lados?
- b) Construye la función que nos da el área del recinto.

Solución:

a)





EJERCICIO 46: Una barra de hierro dulce de 30 cm de larga a 0 °C se calienta, y su dilatación viene dada por una función lineal l = a + bt, donde l es la longitud (en cm) y t es la temperatura (en °C). a) Halla la expresión analítica de l, sabiendo que l(1)=30,0005 cm y que l(3)=30,0015 cm.

b) Representa gráficamente la función obtenida.

Solución:

a)
$$I(1) = 30,0005 \implies a+b = 30,0005$$

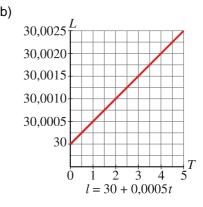
 $I(3) = 30,0015 \implies a+3b = 30,0015$

Restando a la segunda ecuación la primera, queda:

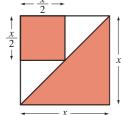
$$2b = 0,0010 \implies b = 0,0005 \rightarrow$$

$$a = 30,0005 - b = 30,0005 - 0,0005 = 30$$

Por tanto: I = 30 + 0,0005t



EJERCICIO 47: En un cuadrado de lado x cm, consideramos el área de la parte que está coloreada:



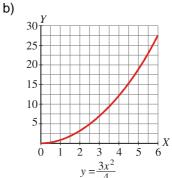
- a) Halla la ecuación que nos da el valor de dicha área, y, en función del lado del cuadrado, x.
- b) Representa gráficamente la función obtenida.

Solución:

a) El área del triángulo es
$$\frac{x^2}{2}$$
.

El área del cuadradito es $\left(\frac{x}{2}\right)^2 = \frac{x^2}{4}$.

Por tanto, el área total será: $y = \frac{x^2}{2} + \frac{x^2}{4} = \frac{3x^2}{4}$



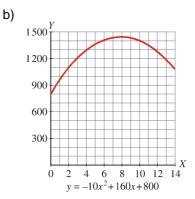
EJERCICI 48: Un tendero tiene 20 kg de manzanas que hoy venderá a 40 céntimos de euro/kg. Cada día que pasa se estropeará 1 kg y el precio aumentará 10 céntimos de euro/kg.

- a) Escribe la ecuación que nos da el beneficio obtenido en la venta, y, en función de los días que pasan hasta que vende las manzanas, x.
- b) Representa la función obtenida, considerando que x puede tomar cualquier valor $x \ge 0$,

Solución:

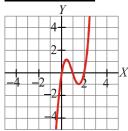
Tendrá (20x) kg y los venderá a (40+10x) céntimos de euro cada uno.

Por tanto, obtendrá un beneficio de $y = (20 - x)(40 + 10x) = 800 + 200x - 40x - 10x^2$ $y = -10x^2 + 160x + 800$



TRANSFORMACIONES DE FUNCIONES

EJERCICIO 49: La siguiente gráfica corresponde a la función y = f(x)

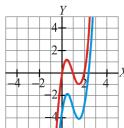


A partir de ella, representa:

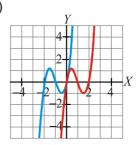
a)
$$y = f(x) - 3$$

b)
$$y = f(x+2)$$

Solución:

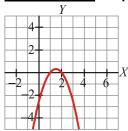


b)



(La gráfica de f(x) no es necesario incluirla. La añadimos para que se aprecie más claramente la transformación).

EJERCICIO 50 : A partir de la gráfica de y = f(x)



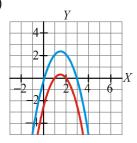
construye las gráficas de:

a)
$$y = f(x) + 2$$

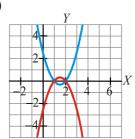
$$\mathbf{b)} \ \mathbf{y} = -\mathbf{f}(\mathbf{x})$$

Solución:

a)

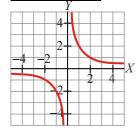


b)



(La gráfica de f(x) no es necesario incluirla. La añadimos para que se aprecie más claramente la transformación).

EJERCICIO 51 : Sabiendo que la gráfica de y = f(x) es la siguiente:



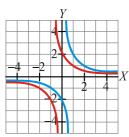
construye, a partir de ella, las gráficas de:

a)
$$y = f(x-1)$$

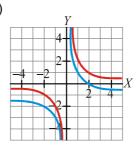
b)
$$y = f(x) - 1$$

Solución:

a)

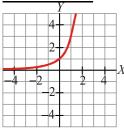


b)



f(x) no es necesario incluirla. La añadimos para que se aprecie más claramente la (La gráfica de transformación).

EJERCICIO 52 : Esta es la gráfica de la función y = f(x).



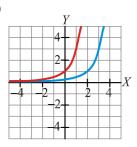
Representa, a partir de ella, las funciones:

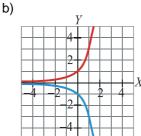
a)
$$f(x-2)$$

b)
$$y = -f(x)$$

Solución:

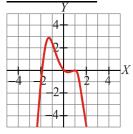
a)





f(x) no es necesario incluirla. La añadimos para que se aprecie más claramente la (La gráfica de transformación).

EJERCICIO 53 : La siguiente gráfica es la de y = f(x).



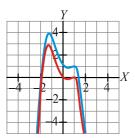
Representa, a partir de ella, las funciones:

a)
$$y = f(x) + 1$$

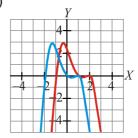
b)
$$y = f(x+1)$$

Solución:

a)



b)



(La gráfica de f(x) no es necesario incluirla. La añadimos para que se aprecie más claramente la transformación).

COMPOSICIÓN DE FUNCIONES

EJERCICIO 54: Dadas las siguientes funciones: $f(x) = \frac{-3x+2}{4}$ y $g(x) = x^2 + 1$, halla:

a) $(f \circ g)(x)$

b) $(\boldsymbol{g} \circ \boldsymbol{g})(\boldsymbol{x})$

Solución:

a)
$$(f \circ g)(x) = f[g(x)] = f[x^2 + 1] = \frac{-3(x^2 + 1) + 2}{4} = \frac{-3x^2 - 3 + 2}{4} = \frac{-3x^2 - 1}{4}$$

b)
$$(g \circ g)(x) = g[g(x)] = g[x^2 + 1] = (x^2 + 1)^2 + 1 = x^4 + 2x^2 + 1 + 1 = x^4 + 2x^2 + 2$$

EJERCICIO 55: Las funciones f y g están definidas por $f(x) = \frac{x^2}{3}$ y g(x) = x + 1. Calcula:

a)
$$(\mathbf{f} \circ \mathbf{g})(\mathbf{x})$$

b) $(\mathbf{g} \circ \mathbf{g} \circ \mathbf{f})(\mathbf{x})$

Solución:

a)
$$(f \circ g)(x) = f[g(x)] = f[x+1] = \frac{(x+1)^2}{3} = \frac{x^2 + 2x + 1}{3}$$

b)
$$(g \circ g \circ f)(x) = g[g[f(x)]] = g[g(\frac{x^2}{3})] = g(\frac{x^2}{3} + 1) = \frac{x^2}{3} + 1 + 1 = \frac{x^2}{3} + 2$$

<u>EJERCICIO 56</u>: Sabiendo que: $f(x)=3x^2$ y $g(x)=\frac{1}{x+2}$ Explica cómo se pueden obtener por composición, a partir de ellas, las siguientes funciones: $p(x)=\frac{3}{(x+2)^2}$ $q(x)=\frac{1}{3x^2+2}$

Solución:

$$p(x) = (f \circ g)(x)$$

$$q(x) = (g \circ f)(x)$$

<u>EJERCICIO 57</u>: Explica cómo se pueden obtener por composición las funciones p(x) y q(x) a partir de f(x) y g(x), siendo: f(x) = 2x - 3, $g(x) = \sqrt{x - 2}$, $p(x) = 2\sqrt{x - 2} - 3$ y $q(x) = \sqrt{2x - 5}$

Solución:

$$p(x) = (f \circ g)(x)$$

$$q(x) = (q \circ f)(x)$$

EJERCICIO 58: Las funciones f y g están definidas por: $f(x) = \frac{x-1}{3}$ y $g(x) = \sqrt{x}$. Explica cómo, a partir de ellas, por composición, podemos obtener: $p(x) = \sqrt{\frac{x-1}{3}}$ y $q(x) = \frac{\sqrt{x}-1}{3}$

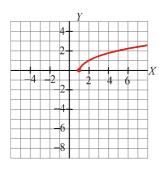
Solución:

$$p(x) = (q \circ f)(x)$$

$$a(x) = (f \circ a)(x)$$

INVERSA DE UNA FUNCIÓN

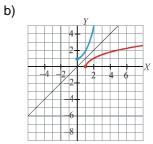
EJERCICIO 59 : Esta es la gráfica de la función y = f(x):



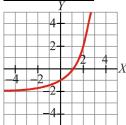
- a) Calcula $f^{-1}(0)$ y $f^{-1}(2)$.
- b) Representa en los mismos ejes $f^{-1}(x)$ a partir de la gráfica de f(x).

Solución:

a)
$$f^{-1}(0) = 1$$
 porque $f(1) = 0$
 $f^{-1}(2) = 5$ porque $f(5) = 2$



EJERCICIO 60: Dada la gráfica de la función y = f(x):

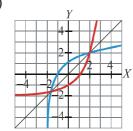


- a) Calcula $f^{-1}(-1)$ y $f^{-1}(0)$.
- b) Representa gráficamente en los mismos ejes $f^{-1}(x)$, a partir de la gráfica de f(x).

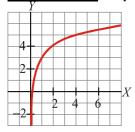
Solución:

a)
$$f^{-1}(-1) = 0$$
 porque $f(0) = -1$
 $f^{-1}(0) = 1$ porque $f(1) = 0$

b)



EJERCICIO 61 : A partir de la gráfica de y = f(x):

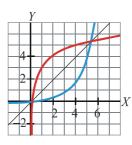


- a) Calcula $f^{-1}(3)$ y $f^{-1}(5)$.
- b) Representa, en los mismos ejes, $f^{-1}(x)$.

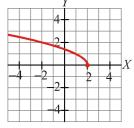
Solución:

a)
$$f^{-1}(3) = 1$$
 porque $f(1) = 3$
 $f^{-1}(5) = 4$ porque $f(4) = 5$

b)



EJERCICIO 62: Esta gráfica corresponde a la función y = f(x):



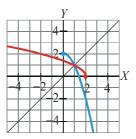
A partir de ella:

- a) Calcula $f^{-1}(2)$ y $f^{-1}(0)$.
- b) Representa, en los mismos ejes, la función $f^{-1}(x)$.

Solución:

a)
$$f^{-1}(2) = -2$$
 porque $f(-2) = 2$

 $f^{-1}(0) = 2$ porque f(2) = 0



EJERCICIO 63 : Halla la función inversa de:

a)
$$f(x) = \frac{2x-1}{3}$$

b)
$$f(x) = \frac{2-3x}{4}$$

c)
$$f(x) = \frac{-x+3}{2}$$

d)
$$f(x) = \frac{-2x-1}{5}$$

b)
$$f(x) = \frac{2-3x}{4}$$
 c) $f(x) = \frac{-x+3}{2}$ d) $f(x) = \frac{-2x-1}{5}$ e) $f(x) = \frac{-2+7x}{3}$

a) Cambiamos x por y, y despejamos la y:

$$x = \frac{2y-1}{3}$$
 \Rightarrow $3x = 2y-1$ \Rightarrow $3x+1=2y$ \Rightarrow $\frac{3x+1}{2} = y \Rightarrow \text{Por tanto:}$ $f^{-1}(x) = \frac{3x+1}{2}$

b) Cambiamos x por y y despejamos la y:

$$x = \frac{2-3y}{4}$$
 \Rightarrow $4x = 2-3y$ \Rightarrow $3y = 2-4x$ \Rightarrow $y = \frac{2-4x}{3}$ \Rightarrow Por tanto: $f^{-1}(x) = \frac{2-4x}{3}$

c) Cambiamos x por y, y despejamos la y:

$$x = \frac{-y+3}{2}$$
 \Rightarrow $2x = -y+3$ \Rightarrow $y = 3-2x$ \Rightarrow Por tanto: $f^{-1}(x) = 3-2x$

d) Cambiamos x por y, y despejamos la y:

$$x = \frac{-2y-1}{5}$$
 \Rightarrow $5x = -2y-1$ \Rightarrow $2y = -5x-1$ \Rightarrow $y = \frac{-5x-1}{2}$ \Rightarrow Por tanto: $f^{-1}(x) = \frac{-5x-1}{2}$

e) Cambiamos x por y y despejamos la y:

$$x = \frac{-2+7y}{3}$$
 \Rightarrow $3x = -2+7y$ \Rightarrow $3x+2=7y$ \Rightarrow $\frac{3x+2}{7} = y \Rightarrow \text{Por tanto}$: $f^{-1}(x) = \frac{3x+2}{7}$