ESTADÍSTICA BIDIMENSIONAL Y CALCULADORA GRÁFICA

Ejemplo

IBO May

	Fiempo transcurrido desde la apertura (x años)	2	4	6	8	10
N	Ventas (y millones de dólares)	12	20	30	36	52

- ii) Escriba el valor de r.
- b) A partir de lo anterior, estime las ventas de la empresa, en millones de dólares, después de 7 años.

Menú→Estadística→Teclear la lista x en list 1, y la lista y en list 2

	List 1	List 2	List 3	List 4
SUB				
1	2	12	1	
2	4	20		
3	6	30		
4	8	36		

[→]F2 (CALC)→F6(SET)

8	Rad Norm1 d/c	Real						
1Var	XList	:List1						
1Var	Freq	:List2						
2Var	XList	:List1						
2Var	YList	:List2						
2Var	Freq	:1						
	2var Freq : 1							

Comprobar y/o seleccionar que para 2 variables, la x está en la List1, y la y en list 2. En este problema las parejas de datos no se repiten, luego la frecuencia se establece como 1.

EXIT \rightarrow F2(2-VAR)

y aparecerán todos los resultados, con las teclas del cursor veremos todos:

EXIT→F3(REG)

Y aparecerán las distintas opciones de regresión: Lineal (x), cuadrática, polinómica de mayor grado, exponencial, logarítimica, etc. En este caso nos piden lineal:

 $F1(X) \rightarrow F1(ax+b)$ que es como pide el problema:

De donde a=4.8

b= 1.2

r= 0.98806436

Además podemos representar la recta:

F6 (COPY)→Aparece la pantalla de gráficos:

EXE

Aparentemente parece que no ha hecho nada, pero la fórmula queda copiada (si volvemos a repetir el proceso, que no es necesario, aparece la fórmula copiada):

 $EXIT \rightarrow EXIT \rightarrow EXIT \rightarrow EXIT$ hasta la primera pantalla:

-			590	
	List 1	List 2	List 3	List 4
SUB			e.	
1	2	12	1	
2	4	20		
3	6	30		
4	8	36		

F1(GRAPH) → F6(SET):

Rad Norm1 d/c	Real
StatGraph1	2019-124
Graph Type	Linear
XList	:List1
YList	:List2
Frequency	:1
Grph Color	Blue

Escoger gráfico type Linear para Statgraph 1

Rad Norm1 d/c R	eal	
StatGraph2		
Graph Type	Scatter	
XList	:List1	
YList	:List2	
Frequency	:1	
Mark Type	:0	
Color Link	:Off	+
GRAPH1]GRAPH2]GRAPH3		

Escoger Scatter para Statgraph 2

EXIT→F4 (SELECT)

8	Rad No	rm1 d/cR	eal	a vis	Rad Norm1 d/c Real			
	List 1	List 2	List 3	List 4		StatGraph1	:DrawOn	
SUB			4			StatGraph2	:DrawOn	
1	2	12				StatGraph3	:DrawOff	
2	4	20				Check De Contra de Contra do Contra do Contra de Co		
3	6	30						
4	8	36						
~				2		V		
[GRAPH1] [GRAPH2] [GRAPH3] SELECT SET						On Off	DRAW	

Seleccionar Statgraph 1 y 2 ON para que los represente conjuntamente. Y veamos el grado de dispersión de los puntos en relación a la recta teórica de correlación:

Con las teclas del cursor podemos mover la gráfica para que aparezca la escala. Sin embargo todo esto es innecesario para contestar al apartado b) del problema. Solamente se presenta a modo orientativo como representar la recta junto con los puntos.

Para poder extrapolar valores y contestar al apartado b) se puede hacer desde el momento en que copiamos la formula de la recta de regresión en la pantalla de fórmulas, así que vayamos allá:

 $MENU \rightarrow GRAFICO \rightarrow EXE \rightarrow F1(SELECT)$ Si no estuviera seleccionada la fórmula \rightarrow F6(DRAW):

SHIFT \rightarrow F5(G-SOLVE) \rightarrow F6 \rightarrow F1(Y-CALC)

J.F. Antona

Ingresamos x=7, tecleamos EXE y calcula el valor predicho por la recta teórica. En este caso Y= 34.8, es decir **34.8 millones de dólares.**

OTRA FORMA DIRECTA SIN SALIR DEL MENÚ ESTADÍSTICA:

Una vez representados los puntos con el gráfico "scatter" en el gráfico 1:

Si presionamos la tecla de función correspondiente, realizará:

2VAR =análisis estadístico de las dos variables x e y

X = Representa conjuntamente en el diagrama de dispersión la línea de mejor ajuste (recta de regresión)

Med, X², x³, x⁴, log, Exp, Pwr, sin, etc (ajusta los puntos a otras funciones y la representa conjuntamente con los puntos del diagrama de dispersión, med-med, cuadrática, tercer grado, cuarto grado, logarítmica, exponencial, potencial, seno, etc).

Tecleamos F2 (X) que corresponde con la regresión lineal:

y=ax+b, junto con r.

Tecleamos ahora F6 (DRAW) y dibuja la gráfica:

Tecleamos G-solv (Resolver cuestiones de la gráfica):

como está en amarillo encima de la tecla F5, tecleamos previamente SHIFT para poder acceder a dicha función:

Aparece la función Y-CALC, permite predecir

valores de Y una vez introducido el de X.

Por tanto tecleamos F1 (Y-CALC):

En este momento, la calculadora está esperando que sea tecleado algún valor para X. Tecleamos por tanto 7, que es lo que pedía el problema, a continuación EXE, y:

Proyecta el punto que le corresponde en la recta

de regresión. Observamos que le corresponde un Y=34.8 millones de dólares.

NOTA:

Regresión Med-Med

Cuando el diagrama de dispersión presenta grandes oscilaciones, al dibujar la recta de regresión de y sobre x podemos observar que se ajusta muy mal a la nube de puntos debido a que la recta está basada en los valores de las medias y éstas se ven afectadas por los valores extremos ("outliers, puntos fuera de línea).

John Wilder Tukey desarrolló una recta basada en la mediana y que en la actualidad conocemos con el nombre de recta de Tuckey, recta Med-Med o recta resistente. También es un tipo de regresión lineal, pero que minimiza los efectos de los valores extremos. Es útil para obtener una regresión fiable a partir de datos que contienen fluctuaciones irregulares, como por ejemplo series temporales en economía: contienen fluctuaciones estacionales, que hacen que el cálculo de la recta de tendencia por el método de mínimos cuadrados sea poco fiable debido a la gran dispersión de los datos.