CÁLCULO DIFERENCIAL E INTEGRAL CON USO DE CALCULADORA GRÁFICA EN EXÁMENES DE BI

Ejemplo 1				
Mayo 00 P2	In this question you should note that radians are used throughout.			
	(a) (i) Sketch the graph of $y = x^2 \cos x$, for $0 \le x \le 2$ making clear the approximate positions of the positive x-intercept, the maximum point and the end-points.			
	(ii) Write down the approximate coordinates of the positive x-intercept, the maximum point and the end-points.			
	(b) Find the exact value of the positive x-intercept for $0 \le x \le 2$.			
	Let R be the region in the first quadrant enclosed by the graph and the x-axis.			
	(c) (i) Shade R on your diagram.			
	(ii) Write down an integral which represents the area of R .			
	(d) Evaluate the integral in part (c)(ii), either by using a graphic display calculator, or by using the following information.			
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2\sin x + 2x\cos x - 2\sin x\right) = x^2\cos x.$			

a) Abrir menú gráfico. Teclear la ecuación

Representarla y hacer zoom (SHIFT y después F2) en el dominio requerido x mayor que 0 y menor que 2:

MathRadNorm1 Real R	Selec. punto final rango	R
-5 -4 -3 -2 -1 0 1 2 3 4 5 6	x -5 -5 -4 -3 -2 -1 0 1 2 3 2	× 1 5 6
-2	X=2.5	САЈА

Una vez representada, teclear SHIFT y aparece el menú anterior. Presionar F5 (G-solve) y hay muchas opciones que nos interesan, empezamos por teclear ROOT (raíces o intersección con eje x):

1ª raíz x=0 (dentro del zoom de la

ventana)

1 [] Y1=x	EXE]: Mo ² cos x	strar coorden	iadas <u>R</u>
1	0	\frown	x
	-1-		RAÍZ
X=1.	5707963	27 Y=0	A

2ª raíz x=1.57 . Vamos atrás con EXIT, si es necesario se vuelve a

empezar la representación y esta vez damos a MAX:

 \square Máximo en x=1.077, y alcanza el valor de y=0.5498.

Los puntos extremos (end points), uno ya lo sabemos es en x=0, P1(0,0)

Para hallar las coordenadas en x=2, vamos para atrás, damos a G-SOLVE (F5) de nuevo, la flecha de F6, y aparece el menú de la siguiente gráfica, escogemos Y-CAL (F1)

Obtenemos la ordenada y en x=2, luego el otro punto es P2 (2, -1.6646)

Luego, contestamos:

- a) i) Copiamos lo mejor posible el siguiente gráfico en 0≤x≤2
 ii) Raices: P(0,0) y Q(1,57,0) Máximo: M(1.077, 0.5498) End-points: P1(0,0) y P2 (2, -1.6646)
- b) positive x-intercept: Q(1,57,0)

c) i) La región es la siguiente:

ii) La integral es la siguiente: $R = \int_0^{1.57} x^2 \cos x \ dx$

d) R=0.4674011 con la calculadora gráfica como señala el gráfico anterior.

CÁLCULO DEL APARTADO d) GRÁFICAMENTE:

El apartado d) se calcula, en G-SOLVE, tecleando F6 para ir más menús, se escoge el de la integral, (F3), y para este caso, como vamos a escoger como límites las raíces, escogemos F2 (ROOT), (también podemos establecer nosotros los límites con F1, Si hubiera 2 gráficas, la intersección de las dos con F3, y F4, la calculadora, nos da a elegir uno a uno todos los posibles valores como límites, raíces o intersecciones ...)

Da el área de la región: R= 0.4674011

OTRA FORMA:

Menú matemáticas, escoger F4 (MATH), después F1 (Integrales)

MENÚ PR R	🖹 MathRadNorm1 d/cReal 🛛 🥂	HathRadNorm1 d/cReal
Ejec-Mat Estadistica eActivity HojaCal.		
Gráfico Dinámico Tabla Recursión		
9 aX ^a bX ^{ab} A B		
Cónicas Ecuación Programa Finanzas 🔽	JUMP DELETE MAT/VCT MATH	$\int dx \Sigma (\Box $

Tecleamos la integral y calculamos

OTRA FORMA:

Hay algunos modelos de calculadoras que no tienen la posibilidad de hacer integrales matemáticamente (pero sí gráficamente, como el ejemplo anterior). Aún así, en el problema dan la PRIMITIVA o antiderivada, y aplicando la regla de BARROW sería hallar lo siguiente:

$$R = \int_0^{1.57} x^2 \cos x \, dx = |x^2 \sin x + 2x \cos x - 2 \sin x| \frac{1.57}{0}$$
$$R = (1.57^2 \sin 1.57 + 2 \cdot 1.57 \cos 1.57 - 2 \sin 1.57) - (0^2 \sin 0 + 2 \cdot 0 \cos 0 - 2 \sin 0) =$$
$$R = 0.4674 - 0 = 0.4674$$

J.F. Antona

Directamente con la calculadora:

