SERIE 1.- 2º BI NM.

VECTORES. DERIVADAS

1	[Puntuación máxima: 5]	
Mayo 2018 P1	Sean $\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ y $\overrightarrow{AB} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$, donde O es el origen. L_1 es la recta que pasa por A y por B.	
	(a) Halle una ecuación vectorial para $L_{\scriptscriptstyle \rm I}$.	[2]
	(b) El vector $\begin{pmatrix} 2 \\ p \\ 0 \end{pmatrix}$ es perpendicular a \overrightarrow{AB} . Halle el valor de p .	[3]
2	The diagram shows a rectangle ABCD. M is the midpoint of [BC].	c
	 (a) Express MD in terms of AB and AD. (b) Given that AB = 6 and AD = 4, show that MD·MC = 4. [5 marks] 	В
3 Mayo 2018 P2	[Puntuación máxima: 13] Dos puntos P y Q tienen por coordenadas (3, 2, 5) y (7, 4, 9) respectivamente.	
	(a) (i) Halle \overrightarrow{PQ} .	
	(ii) Halle $\left \overrightarrow{PQ} \right $.	[4]
	Sea $\overrightarrow{PR} = 6i - j + 3k$.	
	(b) Halle el ángulo que forman PQ y PR.	[4]
	(c) Halle el área del triángulo PQR.	[2]
	(d) A partir de lo anterior o de cualquier otro modo, halle la distancia más corta entre R y la recta que pasa por P y Q .	[3]

	-	
4	At time $t = 0$ two aircraft have position vectors $5\mathbf{j}$ and $7\mathbf{k}$. The first moves with velocity $3\mathbf{i} - 4\mathbf{j} + \mathbf{k}$ and the second with velocity $5\mathbf{i} + 2\mathbf{j} - \mathbf{k}$.	
	(a) Write down the position vector of the first aircraft at time <i>t</i> .	
	Show that at time t , the distance d between the two aircraft is given by $d^2 = 44t^2 - 88t + 74$.	
	(c) Show that the two aircraft will not collide.	
	(d) Find the minimum distance between the two aircraft. [12 marks]	
5	Two lines are given by $l_1: r = \begin{pmatrix} -5 \\ 1 \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 0 \\ 4 \end{pmatrix}$ and	
	$l_2: \mathbf{r} = \begin{pmatrix} 3 \\ 0 \\ -9 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 7 \end{pmatrix}.$	
	(a) l_1 and l_2 intersect at P. Find the coordinates of P.	
	(b) Show that the point $Q(5, 2, 5)$ lies on l_2 .	
	(c) Find the coordinates of the point M on l_1 such that [QM] is	
	perpendicular to l_1 . (d) Find the area of the triangle PQM. [10 marks]	
6	(d) Find the area of the triangle PQW. [10 marks]	
6	Let $y = (2+x)\sqrt{3-x}$.	
	a State the domain of the function.	
	b Find $\frac{dy}{dx}$.	
	Find the coordinates of the local maximum.	
7	[Puntuación máxima: 7]	
Mayo 2018 P2	Sea $f(x) = \frac{8x-5}{cx+6}$ para $x \neq -\frac{6}{c}, c \neq 0$.	
	(a) La recta $x = 3$ es una asíntota vertical del gráfico de f . Halle el valor de c .	[2]
	(b) Escriba la ecuación de la asíntota horizontal del gráfico de f .	[2]
	(c) La recta $y=k$, donde $k\in\mathbb{R}$, y el gráfico de $\left f(x) \right $ se cortan exactamente en un punto. Halle los posibles valores de k .	[3]

8	La temperatura de una habitación entre las 17 horas y las 20 horas de cierto día queda descrita bastante bien a partir de la siguiente función (T(x) representa la temperatura a las x horas):		
OVIEDO (NO	$T(x) = 37\frac{x^2}{2} - 342x - \frac{x^3}{3} + 2124 \qquad 17 \le x \le 20$ (b) Dibuja la función. ¿Cuándo se alcanzan la temperatura más alta y la más baja? ¿cuánto valen?		
CALCULADO RA GRÁFICA)	(a) Indica los intervalos de tiempo en que la temperatura subió y aquéllos en que bajó. (c) ¿La función tiene algún máximo o mínimo relativo que no sea absoluto?		
9 Mayo 2018 P1	[Puntuación máxima: 16] Considere una función f . La recta L_1 , cuya ecuación es $y=3x+1$, es tangente al gráfico de f en $x=2$.		
	(ii) Halle $f(2)$. [4] Sea $g(x) = f(x^2 + 1)$ y sea P el punto del gráfico de g para $x = 1$.		
	(b) Muestre que la pendiente del gráfico de g en P es igual a 6 . [5]		
	(c) Sea L_2 la tangente al gráfico de g en P. L_1 y L_2 se cortan en el punto Q. Halle la coordenada g de Q. [7]		
10 EBAU OVIEDO	La profundidad de la capa de arena en una playa se verá afectada por la construcción de un dique. En una zona de la playa, esa profundidad vendrá dada por la siguiente función (P es la profundidad en metros y t el tiempo en años desde el inicio de la construcción). Si la profundidad llegara a superar los 4 metros, se debería elevar la altura del paseo marítimo.		
(NO	(a) ¿Es la profundidad una función continua del tiempo?		
CALCULADO RA GRÁFICA)	$P(t) = \begin{cases} 2 + t^2 & 0 \le t \le 1 \\ 8t^2 - t - 1 \\ 2t^2 & t > 1 \end{cases}$ (a) ¿Es la profundidad una función continua del tiempo? (b) ¿Disminuirá alguna vez la profundidad? Por mucho tiempo que pase ¿será necesario elevar la altura del paseo por causa de la profundidad de la capa de arena?		
	(c) Dibuja la gráfica de la función.		