MATEMÁTICAS II.

EJERCICIOS EBAU

SERIE 5.- SERIE DE VECTORES, RECTAS, PLANOS, ANGULOS Y DISTANCIAS.

Temas: 4, 5 y 6 (libro de texto)

Oviedo 2019 Junio A	3. Sean los planos $\pi_1: x+y+z=0$ y π_2 . Su intersección es la recta $r: \left\{ \begin{array}{c} x+y+z=0 \\ x+z=0 \end{array} \right.$ a) La ecuación del plano π_2 sabiendo que $A(1,1,1) \in \pi_2$. b) La ecuación de un plano π_1' paralelo a π_1 y que esté a una distancia de $\sqrt{3}$ unidade	(1.25 puntos)
2 Oviedo 2019 Junio B	 3. Sean los puntos A(1,1,1), B(1,-1,-1). Calcula: a) La ecuación del plano π que hace que los puntos A y B sean simétricos respecto a b) Los puntos C y D que dividen el segmento AB en tres partes iguales. 	él. (1.5 puntos) (1 punto)
3 Oviedo 2019 Julio A	 3. Sean A(3,1,0) y B(1,3,0) los vértices opuestos de un rombo situado en el plano π: a) Calcula un vector director v̄_r y la ecuación de la recta r a la que pertenecen los otros dos vértices del rombo C y D. (1.5 puntos) b) Determina dichos vértices C y D sabiendo que están a una distancia de √2 unidades del punto medio M. (1 punto) Características de un rombo: Lados iguales paralelos dos a dos. Diagonales perpendiculare en el centro de ambas. 	
4 Oviedo 2019 Julio B	3. Dados el plano $\pi: x+y=1$ y la recta r que pasa por el punto $A(1,1,1)$ con $\vec{v}_r=(0,1,1)$. Calcula: a) El punto P intersección del plano π y de la recta r . b) El punto A' simétrico de A respecto al plano π .	vector director (1.25 puntos) (1.25 puntos)
5 Oviedo 2018 Junio A	 3. Sean r y s dos rectas perpendiculares que se cortan. La recta r viene dada por las ecua r: x-1/2 = y + 1 = -z + 2. Calcula: a) Un vector director v	(0.75 puntos) (1 punto) (0.75 puntos)
6 Oviedo 2018 Junio B	3. Dado la recta $r:$ $\begin{cases} y=1\\ z=0 \end{cases}$, el punto $Q(1,1,1)$ y un plano π . a) Calcula el punto P de la recta r que verifica $d(P,Q)=1$ u . b) Se sabe que $Q\in\pi$ y que $d(P,Q)=d(P,\pi)$. Determina la ecuación del plano π .	(1.25 puntos) (1.25 puntos)

7 Oviedo 2018 Julio	3. Los puntos $A(0,1,0)$ y $B(-1,1,1)$ son dos vértices de un triángulo. El tercero C pertenece a la recta r : $\begin{cases} x=4\\z=1 \end{cases}$. Además la recta que une A y C es perpendicular a la recta r .		
А	a) Determina el punto C.(1.5 puntos)b) Calcula el área del triángulo.(1 punto)		
8 Oviedo 2018 Julio B	3. Dados los puntos $A(2,1,0)$ y $B(1,0,-1)$ y r la recta que determinan. Y sea s la recta definida por s : $\begin{cases} x+y=2\\ y+z=0 \end{cases}$		
	a) Estudia la posición relativa de las rectas. (1.25 puntos) b) Determina un punto C de la recta s tal que los vectores \overrightarrow{CA} y \overrightarrow{CB} sean perpendiculares. (1.25 puntos)		
9 Oviedo 2018 Modelo A	Se considera la recta r : $\begin{cases} 2x - y - 5 = 0 \\ x + z - 2 = 0 \end{cases}$		
	a) (1,25 puntos) Halla la ecuación del plano π que contiene a r y pasa por el origen de coordenadas.		
	b) (1,25 puntos) Halla la ecuación de la recta perpendicular a π que pasa por el punto $(1,0,1)$.		
10 Oviedo 2018 Modelo	3. a) (1,25 puntos) Estudia la posición relativa de la recta $r: \frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ y el plano $\pi: 2x+4y-3z=15$.		
В	b) (1,25 puntos) En caso de cortarse, determina la intersección.		
11 Oviedo 2017 Junio A	3. Dadas las rectas $r:$ $\begin{cases} x+2y=-1 \\ z=1 \end{cases}$ y $s:$ $x+1=\frac{y-1}{2}=z.$ Calcula:		
	a) Un vector director de cada recta. (0.75 puntos)		
	b) El ángulo que forman las rectas. (0.75 puntos) c) El plano paralelo a las dos rectas y que pasa por el punto A(1,2,1). (1 punto)		
12			
Oviedo 2017 Junio B	3. Dados los puntos $A(1,2,0)$, $B(-1,1,1)$, $C(0,0,1)$, $D(4,1,3)$. Determina: a) Si los cuatro puntos son coplanarios. (0.75 puntos)		
	b) La recta r que pasa por D y es perpendicular al plano π que contiene los puntos A, B, C . (1 punto)		
	c) El punto de corte de la recta r con el plano π . (0.75 puntos)		
13 Oviedo 2017 Julio A	3. Sea el punto $A(1,2,0)$ perteneciente a un plano π . Calcula:		
	a) La ecuación del plano π sabiendo que $P(0,0,-2)$ pertenece a la recta perpendicular a π que pasa por el punto A . (1 punto)		
	b) La ecuación de un plano paralelo a π y que esté a distancia 3 unidades del mismo. (1 punto)		
	c) Un punto B perteneciente a π y al plano π' : $2x-y=0$ y que está a distancia $\sqrt{45}$ de A . (Observación: $A \in \pi'$) (0.5 puntos)		
14 Oviedo 2017 Julio B	3. Dada la recta $r:$ $\begin{cases} x-y+2z=1\\ 2x+y-5z=2 \end{cases}$ y el plano $\pi:$ $ax-y+z+1=0$		
	a) Halla el valor de a para que sean paralelos. (1.5 puntos)		
	b) Para $a=2$, calcula la ecuación del plano π' que contiene a r y es perpendicular a π . (1 punto)		
15 Oviedo 2017 Modelo A	Ejercicio 2 Se denota por r la recta $x-6=y-7=\frac{z-4}{-2}$ y por P el punto de coordenadas		
	(1,0,1).		
	 a) Halle la ecuación del plano que pasa por P y es perpendicular a r. (1 punto) b) Halle el punto de r más próximo a P y halle la distancia de P a r. (1.5 puntos) 		

16 Oviedo 2017	Ejercicio 2 Se consideran los puntos <i>A (2,-1,1)</i> y <i>B (-2,3,1)</i> .
Modelo B	a) Halle los puntos C y D que dividen al segmento AB en tres partes de igual longitud. (1 punto)
	b) Halle el plano respecto del cual los puntos A y B son simétricos. (1.5 puntos)
17 Oviedo 2016 Fase General Junio	Ejercicio 2 Considere la recta $r:\begin{cases} x+y-z+1=0\\ y-z=0 \end{cases}$. a) Escriba la ecuación implícita de un plano π perpendicular a r pasando por el punto A(-1, 2, 2).
А	 b) Obtenga el punto proyección ortogonal de P(-1, 3,3) sobre el plano π. (1,25 puntos)
18 Oviedo 2016 Fase General Junio B	Ejercicio 2 a) Encuentre m tal que los puntos A(2,-5,2), B(4,m,2) y C(5,-2,2) estén alineados . (1 punto) b) Obtenga las ecuaciones implícitas de la recta determinada por los puntos anteriores. (1 punto) c) Halle la distancia del origen de coordenadas a la recta encontrada en b). (0,5 puntos)
19 Oviedo 2016	Ejercicio 2 a) Obtenga el punto proyección ortogonal de P(1,3,4) sobre el plano $\pi: 2x - y + z - 3 = 0$. (1,5 puntos)
Fase Específica Junio A	b) Halle el punto simétrico de P respecto del plano π . (1 punto)
20 Oviedo 2016	Ejercicio 2 Obtenga las ecuaciones implícitas de una recta que pasa por el punto A(2,-1,-1), es paralela
Fase Específica Junio	al plano $\pi: 4x + y + z + 2 = 0$ y es perpendicular a la recta $s: x = \frac{y}{-2} = z - 5$. (2.5 puntos)
В	(2)s points)