FÓRMULAS DE PROBABILIDAD

· Ley de Laplace:

$$P(A) = \frac{n\'umero de casos favorables}{n\'umero de casos posibles}$$

· Probabilidad de los sucesos seguro, imposible y contrario:

Suceso seguro
$$E \rightarrow P(E) = 1$$

Suceso imposible
$$\emptyset \rightarrow P(\emptyset) = 0$$

Sea el suceso A, el suceso contrario $A' \rightarrow P(A') = 1 - P(A)$

Unión e intersección de sucesos:

Unión $A \cup B \rightarrow$ Uno u otro o ambos.

Intersección $A \cap B \rightarrow Uno y otro.$

Propiedad distributiva:

$$P[(A \cup (B \cap C)] = P[(A \cup B) \cap (A \cup C)]$$

$$P[(A \cap (B \cup C)] = P[(A \cap B) \cup (A \cap C)]$$

Probabilidad de la unión:

Sucesos compatibles
$$\rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Sucesos incompatibles $\rightarrow P(A \cup B) = P(A) + P(B)$

Leves de Morgan:

$$P[(A \cup B)'] = P(A') \cap P(B')$$

$$P[(A \cap B)'] = P(A') \cup P(B')$$

Diferencia de dos sucesos:

$$P(A - B) = P(solo A) = P(A \cap B') = P(A) - P(A \cap B)$$

Probabilidad condicionada:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Probabilidad compuesta:

Si A y B son independientes
$$\rightarrow P(A \cap B) = P(A) \cdot P(B)$$

Si A y B son dependientes
$$\rightarrow P(A \cap B) = P(A/B) \cdot P(B) = P(B/A) \cdot P(A)$$