1 Oviedo 19 junio A	3. Sean los planos $\pi_1: x+y+z=0$ y π_2 . Su intersección es la recta $r: \left\{ \begin{array}{c} x+y+z=0 \\ x+z=0 \end{array} \right.$ Calcula:
	a) La ecuación del plano π_2 sabiendo que $A(1,1,1) \in \pi_2$. (1.25 puntos) b) La ecuación de un plano π_1' paralelo a π_1 y que esté a una distancia de $\sqrt{3}$ unidades de la recta r . (1.25 puntos)
	a) Calculemos la expresión de la recta r en forma de un punto C y un vector director $\vec{v_r}$
	$r:\left\{\begin{array}{ccc} x+y+z=0 \\ x+z=0 \end{array}\right. \iff r:\left\{\begin{array}{ccc} y=0 \\ x+z=0 \end{array}\right. \Longrightarrow \left(x,y,z\right)=(0,0,0)+\lambda(1,0,-1) \lambda \in {\rm I\!R} \Longrightarrow \left(x,y,z\right)=(0,0,0)+\lambda(1,0,-1) \right\}$
	$\implies \frac{C(0,0,0)}{\vec{v_r} = (1,0,-1)}$
	El plano π_2 se puede construir a partir del punto C (o A) y los vectores \overrightarrow{CA} y $\overrightarrow{v_r}$
	$\pi_2 : \left \begin{array}{ccc} x - 0 & y - 0 & z - 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{array} \right = 0 \Longrightarrow \pmb{x - 2y + z} = \pmb{0}$
	b) La ecuación de un plano π_1' paralelo a π_1 es del tipo
	x+y+z+d=0
	y, como la recta r es paralela al plano π'_1 , se tiene que
	$d(r,\pi_1') = d(P,\pi_1') \qquad \forall P \in r$
	En particular podemos coger C
	$\sqrt{3} = d(C, \pi_1') = \frac{ d }{\sqrt{1+1+1}} \implies d = 3 \implies d = \pm 3$
	$\pi_1' : x + y + z \pm 3 = 0$
3. Oviedo 19	3. Sean $A(3,1,0)$ y $B(1,3,0)$ los vértices opuestos de un rombo situado en el plano $\pi: z=0$.
Julio A	a) Calcula un vector director $\vec{v_r}$ y la ecuación de la recta r a la que pertenecen los otros dos vértices del rombo C y D . (1.5 puntos) b) Determina dichos vértices C y D sabiendo que están a una distancia de

Características de un rombo: Lados iguales paralelos dos a dos. Diagonales perpendiculares que se cortan

 $\sqrt{2}$ unidades del punto medio M.

en el centro de ambas.

<u> </u>	
	a) Un vector director $\vec{v_r}$ debe ser perpendicular al vector normal del plano π , $\vec{n}=(0,0,1)$ y al vector que une los puntos A y B , $\overrightarrow{AB}=(-2,2,0)$
	$ec{v_r} = \overrightarrow{AB} imes ec{n} = (2,2,0) \equiv (1,1,0)$
	Un punto de la recta es el punto medio de A y B
	$M=rac{A+B}{2}=(2,2,0)$
	Y la ecuación de r
	$r: (x,y,z) = (2,2,0) + k(1,1,0)$ $k \in \mathbb{R}$ \iff $\left\{ \begin{array}{l} x=y \\ z=0 \end{array} \right.$
	b) C y D pertenecen a r y se pueden expresar en función del punto M
	$C = M + k \vec{v_r} = (2, 2, 0) + k(1, 1, 0)$ $D = M - k \vec{v_r} = (2, 2, 0) - k(1, 1, 0)$
	para algún valor $k\in {\rm I\!R}.$ $d(C,M)=d(D,M)=\sqrt{2k^2}=\sqrt{2} k $
	$a(C,M) = a(D,M) = \sqrt{2}\kappa^2 = \sqrt{2} \kappa $ Como nos dice que esa distancia es $\sqrt{2}$, se tiene
	$ k =1 \implies k=\pm 1$
	C = (2,2,0) + 1(1,1,0) = (3,3,0) $D = (2,2,0) - 1(1,1,0) = (1,1,0)$
4	
4 Oviedo 19 Julio B	3. Dados el plano $\pi: x+y=1$ y la recta r que pasa por el punto $A(1,1,1)$ con vector director $\vec{v}_r = (0,1,1)$. Calcula:
	a) El punto P intersección del plano π y de la recta r . (1.25 puntos) b) El punto A' simétrico de A respecto al plano π . (1.25 puntos)
	a) Un punto $Q(x,y,z)$ de la recta se expresa por
	$Q = A + k \vec{v_r} \qquad k \in {\rm I\!R} \qquad \Longleftrightarrow \qquad (x,y,z) = (1,1,1) + k(0,1,1) = (1,1+k,1+k) \qquad k \in {\rm I\!R}$
	Si además pertenece a $\pi: x+y=1$
	$1 + (1 + k) = 1$ \Longrightarrow $k = -1$ \Longrightarrow $\mathbf{P}(1, 0, 0)$
	b) El punto medio M entre A y A' pertenece al plano π y a la recta s que pasa por A y tiene de vector director el normal al plano π , $\vec{n}=(1,1,0)$
	$s:Q=A+k\vec{n} \qquad k\in {\rm I\!R} \qquad \Longleftrightarrow \qquad (x,y,z)=(1,1,1)+k(1,1,0)=(1+k,1+k,1) \qquad k\in {\rm I\!R}$
	Si además $M\in\pi$ $2+2k=1$ \Longrightarrow $k=-1/2$ \Longrightarrow $M\left(\frac{1}{2},\frac{1}{2},1\right)$
	Se tiene que $A' = M - \overrightarrow{MA} = (1/2, 1/2, 1) - (1/2, 1/2, 0) = (0, 0, 1)$

5.	 Sean r y s dos rectas perpendiculares que se cortan. La recta r viene dada por las ecu r — 1 	aciones
Oviedo 18	$r: \frac{x-1}{2} = y+1 = -z+2$. Calcula:	
Junio A	a) Un vector director \vec{v}_1 de r .	(0.75 puntos)
	b) Un vector director \$\vec{v_2}\$ de s sabiendo que \$\vec{v_1}\$ \times \$\vec{v_2}\$ es proporcional al vector (1, 0, 2).	(1 punto)
	c) Las ecuaciones del plano π que contiene ambas rectas.	(0.75 puntos)
	a) Un vector director de r será	
	$r: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{-1} \implies \vec{v}_1 = (2,1,-1)$	
	b) Si r y s son perpendiculares también lo serán $\vec{v_1}$ y $\vec{v_2}$ y como $\vec{w}=(1,0,2)$ es perpendicular a que	a ambos, se tendrá
	$ec{v}_2 = ec{v}_1 imes ec{w} \ = \ (2, -5, -1)$	
	es un vector director de s . c) Un vector normal al plano π será \vec{w} . Luego la ecuación de π será	
	$\pi : x + 2z + d = 0$	
	Adomés 4(1 1 2) c = c = 5 1 d = 0	
	Además $A(1,-1,2) \in r \subset \pi \implies 5+d=0$	
	$\pi:x+2z=5$	
6 Oviedo 18 Junio B	3. Dado la recta $r: \left\{ egin{array}{ll} y=1 \\ z=0 \end{array} ight.$, el punto $Q(1,1,1)$ y un plano $\pi.$	
	 a) Calcula el punto P de la recta r que verifica d(P,Q) = 1 u. b) Se sabe que Q∈π y que d(P,Q) = d(P,π). Determina la ecuación del plano π. 	(1.25 puntos) (1.25 puntos)
	a) Un punto de la recta es del tipo $P(\lambda,1,0) \qquad \lambda \in {\rm I\!R}$ Luego si $\ d(P,Q)=1.$	
	$\sqrt{(\lambda-1)^2+1}=1 \implies \lambda=1 \implies P(1,1,0)$	
	b) Según los datos del problema se tiene que el vector $\overrightarrow{PQ} = (0,0,1)$ es normal al plano π . Lue	go
	$\pi : z+d=0$	
	Si $Q\in\pi$ π : $z=1$	

8 Oviedo 18 Julio B	3. Dados los puntos $A(2,1,0)$ y $B(1,0,-1)$ y r la recta que determinan. Y sea s la recta definida por $s: \left\{ \begin{array}{l} x+y=2\\ y+z=0 \end{array} \right.$ a) Estudia la posición relativa de las rectas. (1.25 puntos) b) Determina un punto C de la recta s tal que los vectores \overrightarrow{CA} y \overrightarrow{CB} sean perpendiculares. (1.25 puntos) a) Calculemos primero las ecuaciones de la recta r $r: (x,y,z) = A + \lambda \overrightarrow{AB} \lambda \in \mathbb{R} \Longleftrightarrow (x,y,z) = (2,1,0) + \lambda(-1,-1,-1) = (2-\lambda,1-\lambda,-\lambda) \lambda \in \mathbb{R}$ $r: \left\{ \begin{array}{l} x=2-\lambda\\ y=1-\lambda\\ z=-\lambda \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} x-y=1\\ y-z=1 \end{array} \right.$
	Para determinar la posición de las rectas se estudia el sistema
	$\begin{cases} x - y = 1 \\ y - z = 1 \\ x + y = 2 \\ y + z = 0 \end{cases}$
	$ \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad F_3 = F_3 - F_1 \qquad \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \begin{matrix} F_3 = F_3 - 2F_2 \\ F_4 = F_4 - F_2 \\ \equiv \end{matrix} $
	$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 2 & -1 \end{pmatrix} \equiv \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 \end{pmatrix}$
	Se tiene un sistema compatible determinado. Por tanto, las rectas se cortan en un punto. b) Un punto C de la recta s es del tipo
	$s: \left\{ \begin{array}{l} x+y=2 \\ y+z=0 \end{array} \right. \iff \left\{ \begin{array}{l} x=2-y \\ z=-y \end{array} \right. \iff (x,y,z) = (2-\lambda,\lambda,-\lambda) \; \lambda \in \mathbb{R} \Longrightarrow C(2-\lambda,\lambda,-\lambda) \right.$
	Y para que cumpla la condición de perpendicularidad
	$\overrightarrow{CA} \cdot \overrightarrow{CB} = 0 \iff (\lambda, 1 - \lambda, \lambda) \cdot (\lambda - 1, -\lambda, \lambda - 1) = 0 \implies 3\lambda^2 - 3\lambda = 0$
	salen dos posible valores de C
	$\lambda = 0 \implies C(2, 0, 0)$ $\lambda = 1 \implies C(1, 1, -1)$
11 Oviedo 17 Junio B	 3. Dados los puntos A(1,2,0), B(-1,1,1), C(0,0,1), D(4,1,3). Determina: a) Si los cuatro puntos son coplanarios. (0.75 puntos) b) La recta r que pasa por D y es perpendicular al plano π que contiene los puntos A, B, C. (1 punto) c) El punto de corte de la recta r con el plano π. (0.75 puntos)
	a) Los puntos serán coplanarios si los vectores \(\overline{AB}, \(\overline{AC}, \(\overline{AD} \) son linealmente dependientes, que se puede comprobar a través del determinante
	$\left egin{array}{c} \overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD} \end{array} ight = \left egin{array}{ccc} -2 & -1 & 1 \ -1 & -2 & 1 \ 3 & -1 & 3 \end{array} ight = 11$

es decir, los vectores son linealmente independientes, luego no son coplanarios.

	b) El plano π que contiene los puntos A, B, C está determinado por un punto A y los vectores \overrightarrow{AB} y \overrightarrow{AC} .
	$\pi: \begin{vmatrix} x-1 & y-2 & z \\ -2 & -1 & 1 \\ -1 & -2 & 1 \end{vmatrix} = 0 \iff x+y+3z-3=0$
	La recta r tendrá como uno de sus vectores directores al vector normal al plano π , $\vec{v_r} = (1, 1, 3)$. Y su ecuación vectorial será $r : (x, y, z) = (4, 1, 3) + \lambda(1, 1, 3) \qquad \lambda \in \mathbb{R}.$
	O, en las otras formas
	$r: \left\{ egin{array}{ll} x=4+\lambda \ y=1+\lambda \ z=3+3\lambda \end{array} ight. \qquad \Longleftrightarrow \qquad \left\{ egin{array}{ll} x-y=3 \ 3x-z=9 \end{array} ight. \qquad \Longleftrightarrow \qquad x-4=y-1=rac{z-3}{3} \end{array} ight.$
13 Oviedo 17 Julio B	3. Dada la recta $r:$ $\left\{ \begin{array}{ll} x-y+2z=1 \\ 2x+y-5z=2 \end{array} \right.$ y el plano $\pi:$ $ax-y+z+1=0$
	 a) Halla el valor de a para que sean paralelos. (1.5 puntos) b) Para a = 2, calcula la ecuación del plano π' que contiene a r y es perpendicular a π. (1 punto)
	a) Calculamos un vector director de la recta
	$r: \left\{ \begin{array}{ll} x-y+2z=1 & \stackrel{Ee_1+Ee_2}{\longleftrightarrow} \\ 2x+y-5z=2 & \stackrel{Ee_2-2Ee_1}{\longleftrightarrow} \end{array} \right. \left\{ \begin{array}{ll} 3x-3z=3 \\ 3y-9z=0 & {\longleftrightarrow} \end{array} \right. \left\{ \begin{array}{ll} x=1+z \\ y=3z & {\longleftrightarrow} \end{array} \right.$
	$\iff (x,y,z) = (1,0,0) + \lambda(1,3,1) \lambda \in { m I\!R}$
	Luego $ec{v_r} = (1,3,1)$
	El vector normal al plano es:
	$\pi : ax-y+z+1=0 \iff \vec{n}=(a,-1,1)$
	Para que la recta y el plano sean paralelos, el vector director de la recta y el vector normal al plano tienen que ser perpendiculares.
	$\vec{v_r} \cdot \vec{n} = 0 \Longleftrightarrow (1,3,1) \cdot (a,-1,1) = 0 \Longleftrightarrow a-2 = 0 \Longleftrightarrow a = 2$
	b) El plano π' estará definido por un punto de la recta $P(1,0,0)$ y los vectores $\vec{v_r}=(1,3,1)$ y $\vec{n}=(2,-1,1)$
	$\pi' : \left egin{array}{ccc} x-1 & y & z \ 1 & 3 & 1 \ 2 & -1 & 1 \end{array} ight = 0 \iff 4x+y-7z-4=0$
15 Oviedo 17	Se denota por <i>r</i> la recta $x-6=y-7=\frac{z-4}{-2}$ y por <i>P</i> el punto de coordenadas
Modelo A	(1,0,1).
	 a) Halle la ecuación del plano que pasa por P y es perpendicular a r. (1 punto) b) Halle el punto de r más próximo a P y halle la distancia de P a r. (1.5 puntos)

17 Oviedo 16 Fase General Junio A

Ejercicio 2.- Considere la recta
$$r:\begin{cases} x+y-z+1=0\\ y-z=0 \end{cases}$$

P y su simétrico P'.

- a) Escriba la ecuación implícita de un plano π perpendicular a $\bf r$ pasando por el punto A(-1 , 2 , 2). (1,25 puntos)
- b) Obtenga el punto proyección ortogonal de P(-1, 3, 3) sobre el plano 7. (1,25 puntos)
- a) El vector director del plano π es el de la recta \mathbf{r} , que es perpendicular al vector \mathbf{AG} , siendo \mathbf{G} el punto genérico del plano pedido y el producto escalar, de ambos, tiene que ser nulo y la ecuación pedida del plano

$$\begin{cases} x + y - z + 1 = 0 \\ -y + z = 0 \end{cases} \Rightarrow x + 1 = 0 \Rightarrow x = -1 \Rightarrow y = z \Rightarrow r : \begin{cases} x = -1 \\ y = \lambda \Rightarrow \overrightarrow{v_r} = \overrightarrow{v_{\pi}} = (0, 1, 1) \\ z = \lambda \end{cases}$$
$$\begin{cases} \overrightarrow{v_{\pi}} = (0, 1, 1) \\ \overrightarrow{AG} = (x, y, z) - (-1, 2, 2) = (x + 1, y - 2, z - 2) \end{cases} \Rightarrow \overrightarrow{v_{\pi}} \perp \overrightarrow{AG} \Rightarrow \overrightarrow{v_{\pi}} \cdot \overrightarrow{AG} = 0 \Rightarrow 0 \Rightarrow 0$$

 $(0,1,1)\cdot(x+1,y-2,z-2)=0 \Rightarrow y-2+z-2=0 \Rightarrow \pi:y+z-4=0$ b) El punto **Q** de intersección de la recta r, perpendicular al plano y el plano es el punto medio entre el punto

Fy su simetrico P.
$$\begin{cases}
 x = -1 \\
 y = \lambda \\
 z = \lambda
\end{cases} \Rightarrow \pi: \lambda + \lambda - 4 = 0 \Rightarrow 2\lambda - 4 = 0 \Rightarrow 2\lambda = 4 \Rightarrow \lambda = 2 \Rightarrow Q \begin{cases}
 x = -1 \\
 y = 2 \Rightarrow Q(-1, 2, 2) \\
 z = 2
\end{cases}$$

$$\begin{cases} x_{\mathcal{Q}} = \frac{x_{\mathcal{P}} + x_{\mathcal{P}'}}{2} \Rightarrow -1 = \frac{-1 + x_{\mathcal{P}'}}{2} \Rightarrow -1 + x_{\mathcal{P}'} = -2 \Rightarrow x_{\mathcal{P}'} = -1 \\ y_{\mathcal{Q}} = \frac{y_{\mathcal{P}} + y_{\mathcal{P}'}}{2} \Rightarrow 2 = \frac{3 + y_{\mathcal{P}'}}{2} \Rightarrow 3 + y_{\mathcal{P}'} = 4 \Rightarrow y_{\mathcal{P}'} = 1 \Rightarrow \mathcal{P}'(-1, 1, 1) \\ z_{\mathcal{Q}} = \frac{z_{\mathcal{P}} + z_{\mathcal{P}'}}{2} \Rightarrow 2 = \frac{3 + y_{\mathcal{P}'}}{2} \Rightarrow 3 + z_{\mathcal{P}'} = 4 \Rightarrow z_{\mathcal{P}'} = 1 \end{cases}$$

18 Oviedo 16

Ejercicio 2.- a) Encuentre m tal que los puntos A(2, -5, 2), B(4, m, 2) y C(5, -2, 2) estén alineados . (1 punto)

b) Obtenga las ecuaciones implícitas de la recta determinada por los puntos anteriores.
 (1 punto)

ERROR es la Fase GENERAL Junio B

c) Halle la distancia del origen de coordenadas a la recta encontrada en b). (0,5 puntos)

a) Los vectores AB y AC son iguales o proporcionales

$$\begin{cases}
\overrightarrow{AB} = (4, m, 2) - (2, -5, 2) = (2, m+5, 0) \\
\overrightarrow{AC} = (5, -2, 2) - (2, -5, 2) = (3, 3, 0) \equiv (1, 1, 0)
\end{cases} \Rightarrow \frac{1}{1} = \frac{m+5}{1} = \frac{0}{0} \Rightarrow \begin{cases}
\frac{1}{1} = \frac{m+5}{1} \Rightarrow m+5 = 1 \Rightarrow m=4 \\
\frac{1}{1} = \frac{0}{0} \Rightarrow 0 = 0
\end{cases}$$

b) La recta r queda determinada por el vector AC y el punto A

$$\overrightarrow{v_r} = \overrightarrow{AC} = (1, 1, 0) \Rightarrow r : \frac{x-2}{1} = \frac{y+5}{1} = \frac{z-2}{0}$$

c) Hallaremos un plano π que contenga el origen de coordenadas y que sea perpendicular a la recta \mathbf{r} hallada en \mathbf{b}), por ello el vector director del plano es el de la recta que es perpendicular al vector \mathbf{OG} , siendo \mathbf{O} el origen de coordenadas y \mathbf{G} el punto genérico del plano buscado. Ambos vectores son perpendiculares y su producto escalar nulo y la ecuación buscada del plano.

El modulo del vector OQ es la distancia buscada, siendo Q el punto de intersección de la recta y el plano.

$$\begin{cases} \overrightarrow{v_{\pi}} = \overrightarrow{v_{r}} = (1,1,0) \\ \overrightarrow{OG} = (x,y,z) - (0,0,0) = (x,y,z) \end{cases} \Rightarrow \overrightarrow{v_{\pi}} \perp \overrightarrow{OG} \Rightarrow \overrightarrow{v_{\pi}} \cdot \overrightarrow{OG} \Rightarrow (1,1,0) \cdot (x,y,z) = 0 \Rightarrow \pi : x + y = 0 \end{cases}$$

$$r : \begin{cases} x = 2 + \lambda \\ y = -5 + \lambda \Rightarrow Inter \sec ción \Rightarrow (2 + \lambda) + (-5 + \lambda) = 0 \Rightarrow -3 + 2\lambda = 0 \Rightarrow 2\lambda = 3 \Rightarrow \lambda = \frac{3}{2} \Rightarrow 0 \end{cases}$$

$$Q \begin{cases} x = 2 + \frac{3}{2} \\ y = -5 + \frac{3}{2} \Rightarrow Q \left(\frac{7}{2}, -\frac{7}{2}, 2\right) \Rightarrow \overrightarrow{OQ} = \left(\frac{7}{2}, -\frac{7}{2}, 2\right) - (0,0,0) = \left(\frac{7}{2}, -\frac{7}{2}, 2\right) \Rightarrow 0 \end{cases}$$

$$z = 2$$

$$d(O, r) = |\overrightarrow{OQ}| = \sqrt{\left(\frac{7}{2}\right)^2 + \left(-\frac{7}{2}\right)^2 + 2^2} = \sqrt{\frac{49 + 49 + 16}{4}} = \frac{\sqrt{114}}{2}u^2$$

19 Oviedo 16 Fase específica

Junio A

Ejercicio 2.- a) Obtenga el punto proyección ortogonal de P(1, 3, 4) sobre el plano

 $\pi: 2x - y + z - 3 = 0$. (1,5 puntos)

b) Halle el punto simétrico de P respecto del plano 7 . (1 punto)

a) El vector director del plano π es el de la recta \mathbf{r} que es perpendicular a él y que pasa por el punto dado. El punto de intersección \mathbf{Q} de la recta \mathbf{r} hallada y el plano π es el pedido

$$\overrightarrow{v_r} = \overrightarrow{v_{\pi}} = (2, -1, 1) \Rightarrow r : \begin{cases} x = 1 + 2\lambda \\ y = 3 - \lambda \Rightarrow \pi : 2x - y + z - 3 = 0 \Rightarrow 2(1 + 2\lambda) - (3 - \lambda) + (4 + \lambda) - 3 = 0 \\ z = 4 + \lambda \end{cases}$$

$$2+4\lambda-3+\lambda+4+\lambda-3=0 \Rightarrow 6\lambda=0 \Rightarrow \lambda=0 \Rightarrow Q \begin{cases} x=1+2\cdot0 \\ y=3-0 \Rightarrow Q(1,3,4) \\ z=4+0 \end{cases}$$

b) El punto **Q** de intersección, hallado, de la recta r y el plano es el punto medio entre el punto **P** y su simétrico **P**'.

$$\begin{cases} 1 = \frac{1 + x_{p'}}{2} \Rightarrow 1 + x_{p'} = 2 \Rightarrow x_{p'} = 1 \\ 3 = \frac{3 + y_{p'}}{2} \Rightarrow 3 + y_{p'} = 6 \Rightarrow y_{p'} = 3 \Rightarrow P'(1, 3, 4) \\ 4 = \frac{4 + z_{p'}}{2} \Rightarrow 4 + z_{p'} = 8 \Rightarrow z_{p'} = 4 \end{cases}$$

El punto P, Q y P' es el mismo al pertenecer al plano π