Mathematical Symbols

You will encounter many mathematical symbols during your math courses. The table below provides you with a list of the more common symbols, how to read them, and notes on their meaning and usage. The following page has a series of examples of these symbols in use.

Symbol	How to read it	Notes on meaning and usage
a = b	a equals b	a and b have exactly the same value.
$\begin{array}{cccc} a &\approx & b & \text{or} \\ a \cong b & \end{array}$	a is approximately equal to b	Do not write = when you mean \approx .
$P \Rightarrow Q$	P implies Q	If P is true, then Q is also true.
$P \Leftarrow Q$	P is implied by Q	If Q is true, then P is also true.
$\begin{array}{ccc} P \Leftrightarrow Q & \text{or} \\ P & \text{iff } Q \end{array}$	P is equivalent to Q or P if and only if Q	P and Q imply each other.
(a,b)	the point $a \ b$	A coordinate in \mathbb{R}^2 .
(a,b)	the open interval from a to b	The values between a and b , but not including the endpoints.
[a,b]	the closed interval from a to b	The values between a and b , including the endpoints.
[(a,b]]	The (half-open) interval from a to b excluding a , and including b .	The values between a and b , excluding a , and including b . Similar for $[a, b)$.
\mathbb{R} or \mathbb{R}	the real numbers	It can also be used for the plane as \mathbb{R}^2 , and in higher dimensions.
\mathbb{C} or \mathbf{C}	the complex numbers	$\{a + bi : a, b \in \mathbb{R}\}, \text{ where } i^2 = -1.$
\mathbb{Z} or \mathbf{Z}	the integers	$\dots, -2, -1, 0, 1, 2, 3, \dots$
\mathbb{N} or \mathbf{N}	the natural numbers	$1, 2, 3, 4, \dots$
$a \in B$	a is an element of B	The variable a lies in the set (of values) B .
$a \notin B$	a is not an element of B	
$A \cup B$	A union B	The set of all points that fall in A or B .
$A \cap B$	A intersection B	The set of all points that fall in both A and B .
$A \subset B$	A is a subset of B or A is contained in B	Any element of A is also an element of B .
$\forall x$	for all x	Something is true for all (any) value of x (usually with a side condition like $\forall x > 0$).
Ξ	there exists	Used in proofs and definitions as a shorthand.
∃!	there exists a unique	Used in proofs and definitions as a shorthand.
$f \circ g$	f composed with g or f of g	Denotes $f(g(\cdot))$.
<i>n</i> !	n factorial	$n! = n(n-1)(n-2)\cdots \times 2 \times 1.$
$\lfloor x \rfloor$	the floor of x	The nearest integer $\leq x$.
$\boxed{ \begin{bmatrix} x \end{bmatrix} }$	the ceiling of x	The nearest integer $\geq x$.
$f = \mathcal{O}(g) \text{ or } f = O(g)$	f is big oh of g	$\lim_{x\to\infty} \sup_{y>x} f(y)/g(y) < \infty$. Sometimes the limit is toward 0 or another point.
f = o(g)	f is little oh of g	$\lim_{x \to \infty} \sup_{y > x} f(y)/g(y) = 0.$
$x \to a^+$	x goes to a from the right	x is approaching a, but x is always greater than a. Similar for $x \to a^-$.

The Trouble with =

The most commonly used, and most commonly misused, symbol is '='. The '=' symbol means that the things on either side are actually the same, just written a different way. The common misuse of '=' is to mean 'do something'. For example, when asked to compute (3 + 5)/2, some people will write:

Bad:

$$3 + 5 = 8/2 = 4.$$

This claims that 3 + 5 = 4, which is false. We can fix this by carrying the '/2' along, as in (3+5)/2 = 8/2 = 4. We could instead use the ' \Rightarrow ' symbol, meaning 'implies', and turn it into a logical statement:

Good:

$$3 + 5 = 8 \quad \Rightarrow \quad (3 + 5)/2 = 4.$$

To Symbol or not to Symbol?

Bad: $\lim_{x\to x_0} f(x) = L$ means that $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x$,

$$0 < |x - x_0| < \delta \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

Although this statement is correct mathematically, it is difficult to read (unless you are well-versed in math-speak). This example shows that although you can write math in all symbols as a shortcut, often it is clearer to use words. A compromise is often preferred. **Good:**

The Formal Definition of Limit: Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that f(x) approaches the limit L as x approaches x_0 , and we write

$$\lim_{x \to x_0} f(x) = L$$

if for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all x we have

$$0 < |x - x_0| < \delta \Longrightarrow |f(x) - L| < \epsilon.$$

Other Examples

The ' \Rightarrow ' symbol should be used even when doing simple algebra. **Good:**

$$(y-0) = 2(x-1) \implies y = 2x-2$$

You will be more comfortable with symbols, and better able to use them, if you connect them with their spoken form and their meaning.

Good: The mathematical notation $(f \circ g)(x)$ is read "f composed with g at the point x" or "f of g of x" and means

f(g(x)).