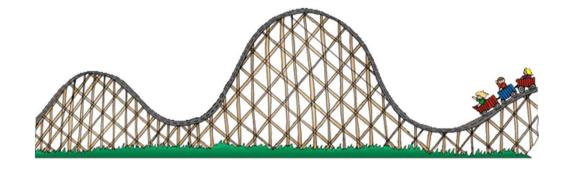
UNIDAD 11

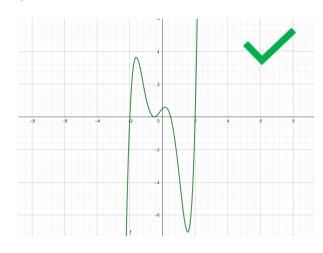
Funciones y gráficas



¿QUÉ VAMOS A APRENDER?

- 1. Definición de función
- 2. Dominio y recorrido
- 3. Continuidad
- 4. Puntos de corte
- 5. Monotonía
- 6. Simetría
- 7. Periodicidad
- 8. Funciones a trozos
- 9. Tasa de Variación Media (TVM)

1. DEFINICIÓN DE FUNCIÓN



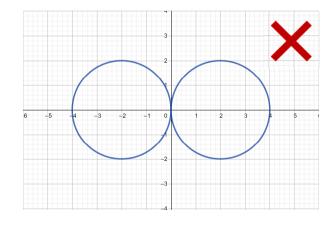
$2x^2+y^2+2x+2y=1$	X	
	7 \	

Kg patatas	Precio compra
1	0,90 €
1,5	1,35€
10	9 €

"Una tienda online hace envíos a toda España. El envío es gratuito para pedidos superiores a 30€, si no, tiene un coste adicional de 3,95€"

$$x^2-y+2x=0$$

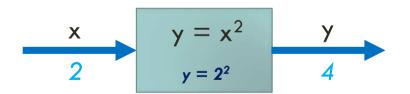
Fecha de nacimiento	Altura con 16 años
15/08/1928	1 <i>5</i> 3 cm
5/07/1970	165 cm
27/03/2003	1 <i>57</i> cm
2/10/2003	167 cm

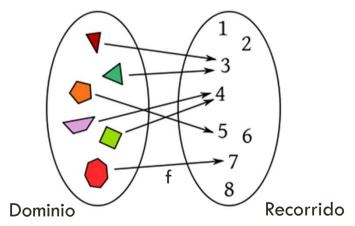


1. DEFINICIÓN DE FUNCIÓN

Una función es una relación entre dos magnitudes, tales que a cada valor de la <u>variable independiente (x)</u> le corresponde **un solo** valor de la <u>variable</u> <u>dependiente (y)</u>.

Para indicar que la variable y depende de x se usa la notación y = f(x), que se lee "y es función de x".





1. DEFINICIÓN DE FUNCIÓN

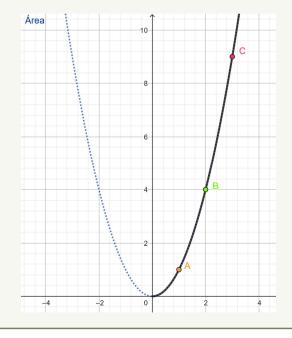
Expresiones de una función:

- Enunciado
- Expresión algebraica
- Tabla de valores
- Gráfica

Relación entre el lado de un cuadrado y su área:

- El área es igual al lado elevado al cuadrado
- $A = I^2$

Lado (cm)	Área (cm²)
1	1
2	4
3	9



1. DEFINICIÓN DE FUNCIÓN: EJERCICIOS

1. Dibujar la función
$$f(x) = \frac{1}{x^2 + 1}$$
 (Da a x los valores -4, -1, 0, 1, 4)

2. En una librería han puesto la siguiente tabla con el precio de las fotocopias:

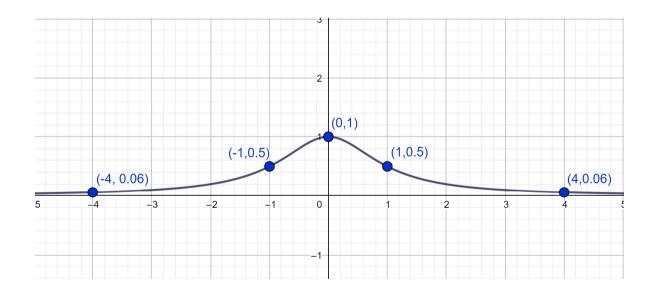
N° de copias	0	1	2	3	4	5	6	7
Precio (€)	0	0,05	0,1	0,15	0,2	0,2	0,24	0,28

Representa gráficamente esta función

1. DEFINICIÓN DE FUNCIÓN: EJERCICIOS

1. Dibujar la función $f(x) = \frac{1}{x^2 + 1}$ (Da a x los valores -4, -1, 0, 1, 4)

x	У
-4	0,06
-1	0,5
0	1
1	0,5
4	0,06

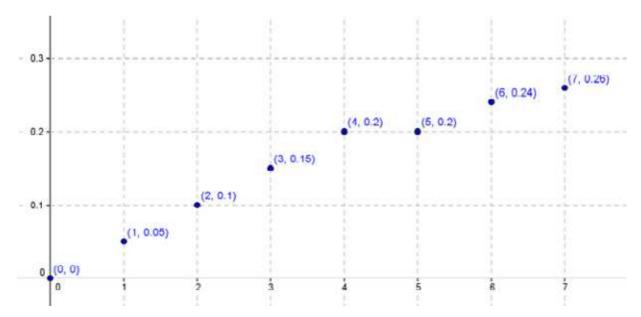


1. DEFINICIÓN DE FUNCIÓN: EJERCICIOS

2. En una librería han puesto la siguiente tabla con el precio de las fotocopias:

N° de copias	0	1	2	3	4	5	6	7
Precio (€)	0	0,05	0,1	0,15	0,2	0,2	0,24	0,28

Representa gráficamente esta función



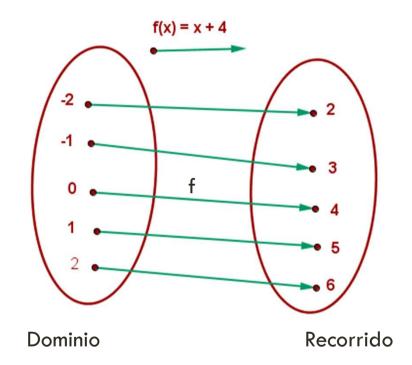
2. DOMINIO Y RECORRIDO

Dominio

Conjunto de todos los valores que puede tomar la variable independiente (x). Se escribe **Dom f**

Recorrido

Conjunto de todos los valores que puede tomar la variable dependiente (y). Se escribe *Im f*



2. DOMINIO Y RECORRIDO

¿Cómo se calcula el dominio?

 Las <u>funciones polinómicas</u> están definidas en todos los números reales (si no hay restricciones de otro tipo)

$$f(x) = x^3 + 2x^2 + 5x - 3$$
 Dom $f = \mathbf{R}$

 Las <u>funciones racionales</u> ("con x en el denominador") no están definidas cuando el denominador se anula.

$$f(x) = \frac{5}{x-3}$$
 Dom $f = \mathbf{R} - \{3\}$

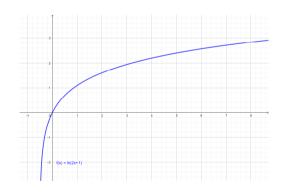
 Las <u>funciones radicales</u> (con raíces de **índice par**) solo están definidas para radicandos mayores o iguales que cero.

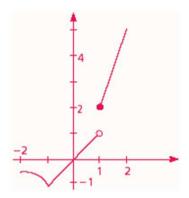
$$f(x) = \sqrt{x-2}$$
 Dom $f = [2, +\infty)$

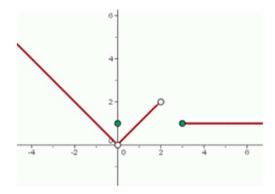
2. DOMINIO Y RECORRIDO

¿Cómo se calcula el recorrido?

• Este curso, utilizaremos su representación gráfica y los tipos de discontinuidad para indicar el recorrido de algunas funciones.







2. DOMINIO Y RECORRIDO: EJERCICIOS

Calcula el dominio de las siguientes funciones:

1.
$$f(x) = x + \sqrt{2x+4}$$

2.
$$g(x) = \frac{5 x}{x^2 - 1}$$

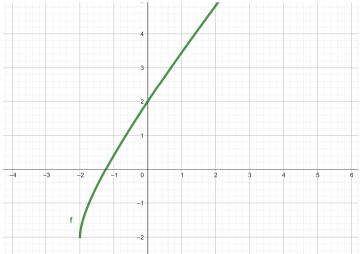
3.
$$h(x) = 2x^3 + x^2 + 6$$

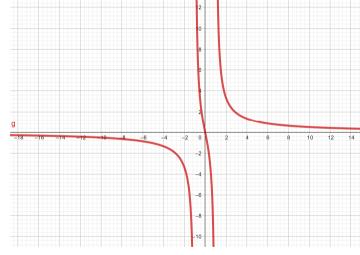
2. DOMINIO Y RECORRIDO: EJERCICIOS

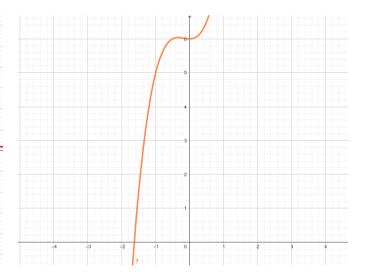
$$f(x) = x + \sqrt{2x + 4}$$

$$g(x) = \frac{5 x}{x^2 - 1}$$

$$h(x) = 2 x^3 + x^2 + 6$$



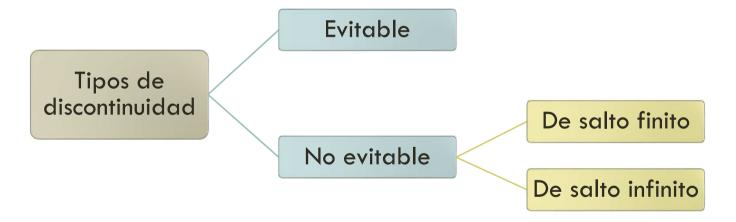




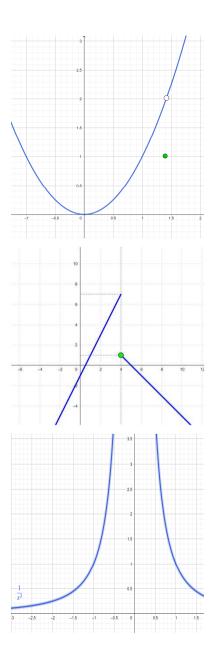
3. CONTINUIDAD

¿Qué es una función continua?

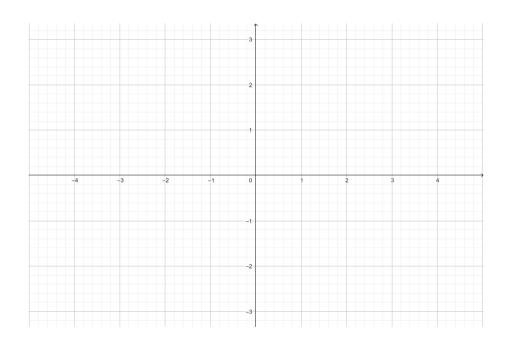
Una función es continua si no se producen "saltos" al dibujarla.



Ejercicio 17 página 184



4. PUNTOS DE CORTE



Puntos de corte con el eje X

(a, 0)

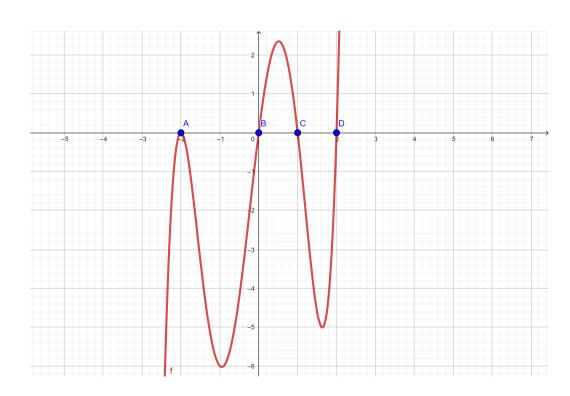
Se calcula despejando: f(a) = 0

Puntos de corte con el eje Y

(0, b)

Se calcula operando: f(0) = b

4. PUNTOS DE CORTE



Raíces de una función:

Puntos de corte con el eje x:

- En una recta (polinomio grado 1)
- > resolver la ecuación
- En una parábola (polinomio grado 2)
- → fórmula de Carnot
- En un polinomio de grado n>2
- → Ruffini

Halla los puntos de corte con los ejes de las siguientes funciones:

$$\int f(x) = \frac{x}{4} - 2$$

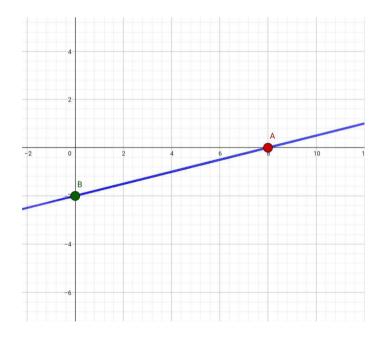
2.
$$g(x) = x^2 - x - 2$$

3.
$$h(x) = x^3 - 2x^2 - 5x + 6$$

4.
$$j(x) = x^4 - 10x^2 + 9$$

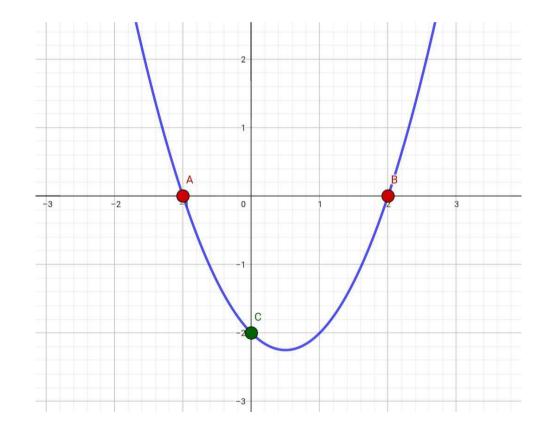
$$f(x) = \frac{x}{4} - 2$$

- Raíces (corte con el eje X)
 A (8,0)
- Ordenada en el origen (corte con el eje y)
 B(0,-2)



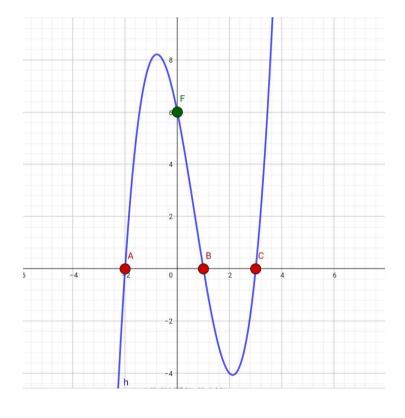
$$g(x) = x^2 - x - 2$$

- Raíces (corte con el eje X)
 A (-1,0)
 B (2, 0)
- Ordenada en el origen (corte con el eje y)
 C (0,-2)



$$h(x) = x^3 - 2x^2 - 5x + 6$$

- Raíces (corte con el eje X)
 - A (-2,0)
 - B (1, 0)
 - C (3, 0)
- Ordenada en el origen (corte con el eje y)
 F (0,6)



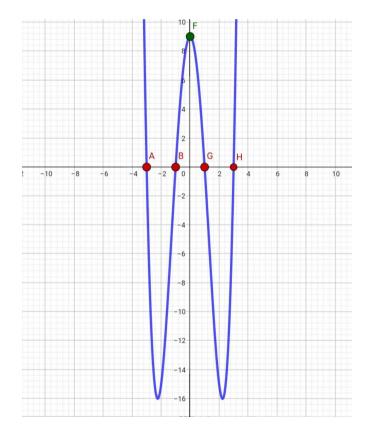
$$j(x) = x^4 - 10 x^2 + 9$$

• Raíces (corte con el eje X)

A (-3,0) B (-1, 0) G (1, 0)

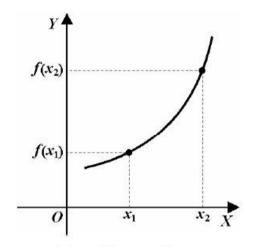
H (3, 0)

 Ordenada en el origen (corte con el eje y)
 F (0,9)



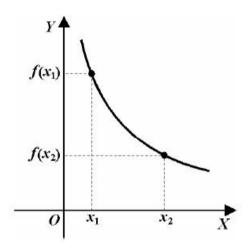
5. MONOTONÍA

Estudio del crecimiento/decrecimiento de una función, así como sus puntos máximos y mínimos



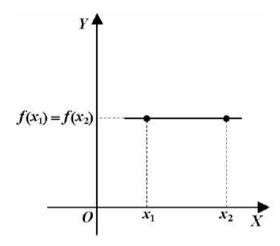
Función creciente

$$x_1 < x_2 \implies f(x_1) < f(x_2)$$



Función decreciente

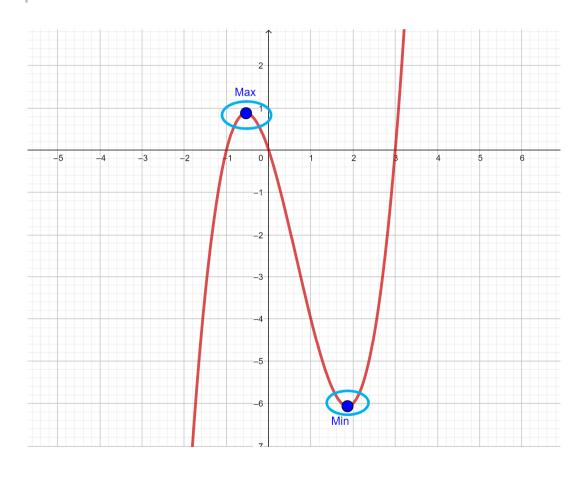
$$x_1 < x_2 \implies f(x_1) > f(x_2)$$



Función constante

$$x_1 < x_2 \implies f(x_1) = f(x_2)$$

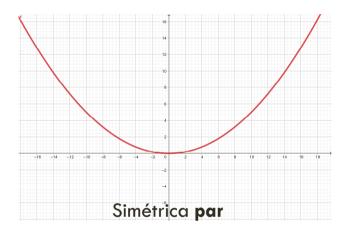
5. MONOTONÍA

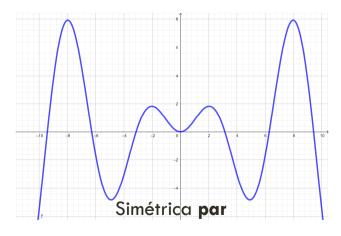


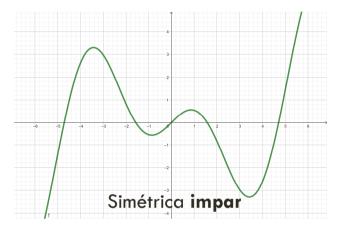
Extremos de una función:

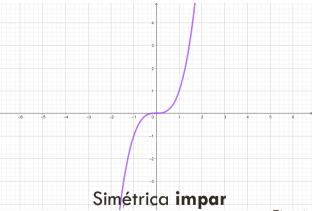
- <u>Máximo</u>: punto del dominio de la función con mayor valor que los de su entorno.
- Relativo: todos los puntos que cumplen esta condición.
- Absoluto: máximo relativo de mayor valor
- <u>Mínimo</u>: punto del dominio de la función con valor menor que todos los de su entorno.
- Relativo: todos los puntos que cumplen esta condición.
- Absoluto: mínimo relativo de menor valor

6. SIMETRÍA









Ejercicios 90 y 92 página 195

6. SIMETRÍA

Analíticamente:

Simetría par:

$$f(-x) = f(x)$$

Simetría impar:

$$f(-x) = -f(x)$$

1.
$$f(x) = x^4 - 3x^2$$

2.
$$f(x) = x^3 - 4x$$

3.
$$f(x) = x^3 - 4x^2 + 3$$

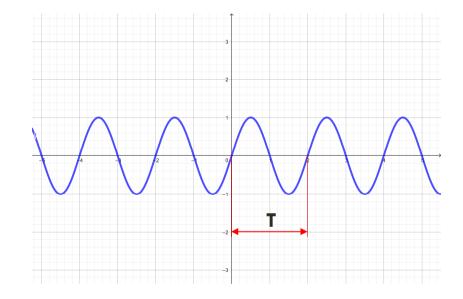
4.
$$f(x) = 5x + 3$$

7. PERIODICIDAD

Una función es periódica cuando los valores de f(x) se repiten cada cierto intervalo.

Vamos a estudiar la periodicidad **gráficamente** solo. Tenemos que saber identificar:

- si la función es periódica o no.
- y si es periódica determinar su período



Ejercicio 94 página 195

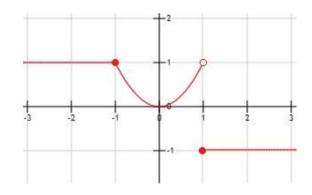
* ¿QUÉ ES "ESTUDIAR UNA FUNCIÓN"? *

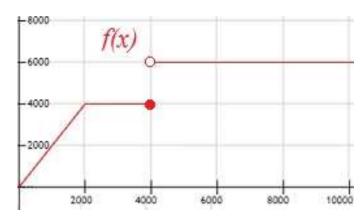
Dar toda la información sobre ella que podamos:

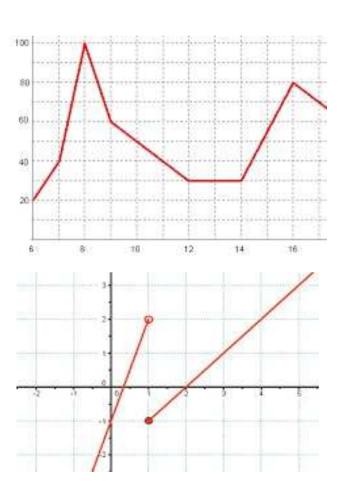
- 1. <u>Dominio y recorrido</u>
- 2. Continuidad: (decir en qué puntos es discontinua y de qué tipo)
- 3. <u>Puntos de corte con los ejes</u>
- 4. Monotonía:
- Decir en qué intervalos es creciente, decreciente y constante
- Indicar los máximos y mínimos
- 5. Simetría
- 6. Periodicidad (solo si conocemos su gráfica)

Ejercicio 34 página 189; Ejercicio 47: **ESTUDIAR** las funciones (dominio, puntos de corte y simetría)

8. FUNCIONES A TROZOS







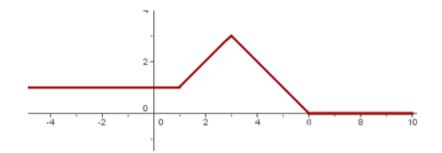
8. FUNCIONES A TROZOS

Tienen distintas expresiones algebraicas para diferentes intervalos.

De estas funciones vamos a trabajar:

- Pasar de su expresión algebraica a la gráfica

$$f(x) = \begin{cases} 1 & si & x \le 1 \\ x & si & 1 < x \le 3 \\ -x + 6 & si & 3 < x \le 6 \\ 0 & si & 6 < x \end{cases}$$



- Estudiar su dominio y recorrido

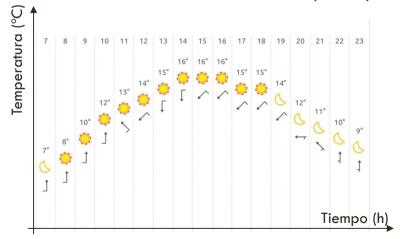
Deberes: 102 y 105

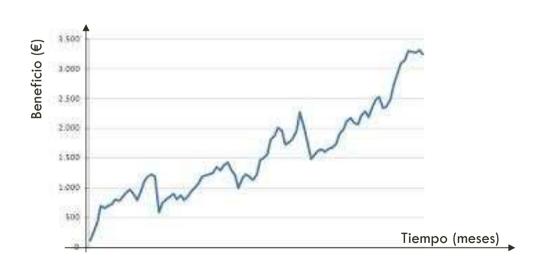
Como vimos al principio, las funciones se utilizan para analizar situaciones reales. Se aplican a numerosos campos de estudio, porque dan mucha información útil.

Hay parámetros que nos ayudan a extraer esa información. Este año vamos a ver:

-Tasa de Variación

-Tasa de Variación Media (TVM)





El autobús en el que circulamos viaja a 50 km/h durante 2 horas y después acelera para seguir circulando a 100 km/h. **La distancia** que recorremos viene dada por la función:

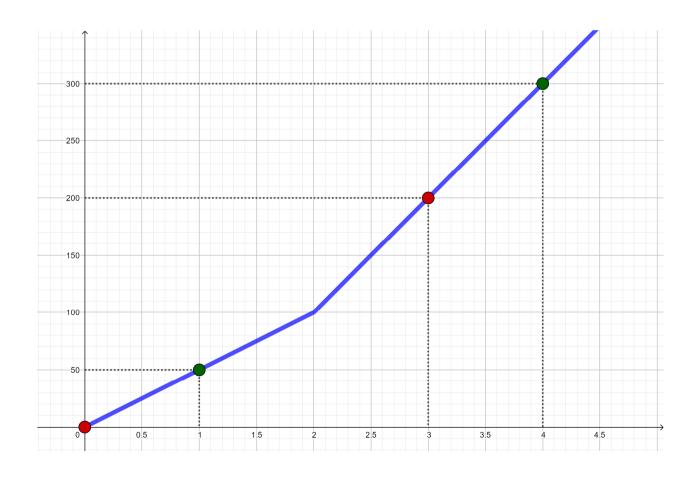
$$f(x) = \begin{cases} 50 x & : 0 \le x < 2 \\ 100 + 100 (x - 2) & : 2 \le x \le 5 \end{cases}$$

Calcula:

- A) ¿Qué distancia se recorre durante las tres primeras horas?
- B) ¿Qué distancia se recorre entre la primera hora y la cuarta hora?
- C) ¿Cuál es la velocidad media entre la primera y la tercera hora? ¿Y entre la primera y cuarta hora?

- A) ¿Qué distancia se recorre durante las tres primeras horas?
- B) ¿Qué distancia se recorre entre la primera hora y la cuarta hora?

$$f(x) = \begin{cases} 50 x & : 0 \le x < 2 \\ 100 + 100 (x - 2) & : 2 \le x \le 5 \end{cases}$$



Tasa de Variación:

La tasa de variación de una función entre dos puntos a y b es la diferencia entre el valor de la función para x=a y el valor para x=b

TV
$$[a,b]=f(b) - f(a)$$

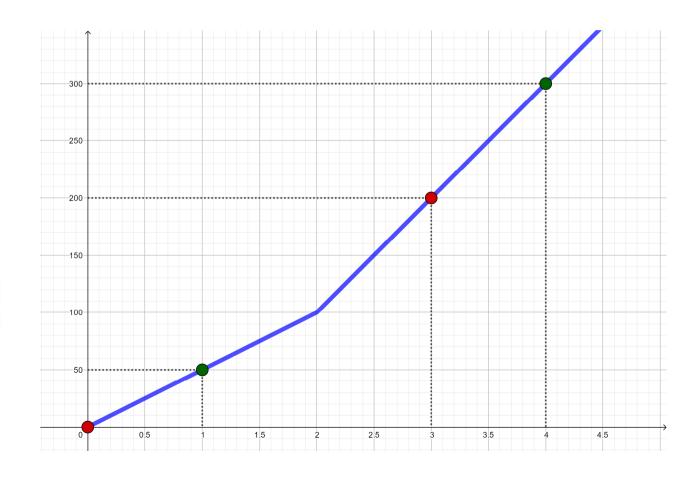
TV
$$[0,3] = f(3) - f(0) = 200 - 0 = 200$$

TV
$$[1,4] = f(4) - f(1) = 300 - 50 = 250$$

C) ¿Cuál es la velocidad media entre la primera y la tercera hora?

¿Y entre la primera y cuarta hora?

$$f(x) = \begin{cases} 50 x & : 0 \le x < 2 \\ 100 + 100 (x - 2) & : 2 \le x \le 5 \end{cases}$$



Tasa de Variación Media:

La tasa de variación media (o velocidad) de una función entre dos puntos a y b es el cociente entre su tasa de variación y la diferencia entre a y b.

$$TVM[a,b] = \frac{TV[a,b]}{b-a} = \frac{f(b)-f(a)}{b-a}$$

$$TVM [0,3] = \frac{TV [0,3]}{3-0} = \frac{f(3)-f(0)}{3-0} = \frac{200}{3} = 66,67 \ km/h$$

$$TVM [1,4] = \frac{TV [1,4]}{4-1} = \frac{f(4)-f(1)}{4-1} = \frac{250}{3} = 83,33 \ km/h$$