ALTERNATIVA I

1.1(4 puntos) Definir producto vectorial de dos vectores. Interpretación geométrica. Dados 3 puntos del espacio, tomados como vértices de un triángulo, calcular su área por aplicación del producto vectorial.

1.2(3 puntos) Definir base de un espacio vectorial. Demostrar que si todo vector x de un espacio vectorial puede expresarse de manera única como combinación lineal de un sistema de vectores : $\{e_1,e_2,...,e_n\}$ dicho sistema es una base.

1.3(3 puntos)

Una fábrica produce un determinado tipo de piezas que empaqueta en cajas de tres modelos distintos. La proporción de piezas defectuosas en cada una de las cajas es respectivamente 2%, 3%, y 5%. Un comerciante solicita una caja de piezas sin especificar modelo. Sabiendo que la probabilidad de recibir una caja del modelo uno es 0'5, del modelo dos 0'4 y del modelo tres 0'1.

Calcular:

- a)La probabilidad de que elegidas tres piezas de la caja recibida, sean no defectuosas.
- b)Suponiendo que no han sido defectuosas, ¿cuál es la probabilidad de que procedan del modelo número dos?

ALTERNATIVA II

2.1(3 puntos) a)Enunciar el teorema de Darboux.

b)Sea f:[a,b]—¬R una aplicación tal que f(a)≠f(b),y sólo toma una vez cada uno de los valores comprendidos entre f(a) y f(b) ¿Implica esto que f es continua en [a,b]?. Justificar la respuesta.

2.2(3 puntos) Definir primitiva o integral indefinida de una función y = f(x). Encontrar una primitiva de la función $y = x^3(\ln x)$ (Nota : $\ln = \log \operatorname{aritmo}$ neperiano)

2.3(4 puntos) Hallar:

- 1)La ecuación de la perpendicular trazada por el punto (0,0,3) al plano x -5y -z +8=0;
- 2)Las coordenadas del pie de esta perpendicular;
- 3)Las coordenadas del punto simétrico del (0,0,3) respecto del plano dado.